李文峰
,
徐科
,
杨朝霖
,
高阳
,
周鹏
钢铁
研究了BP网络、LVQ1网络、LVQ2网络所构建的分类器的性能,将这3种分类器用于中厚板表面缺陷的自动分类中.从现场在线采集中厚板的表面缺陷图像,将每幅表面图像划分成64×64大小的子图像,对子图像进行FFT变换,得到子图像的幅值谱.将幅值谱中心区域内的像素灰度值作为特征量,分别输入给BP网络、LVQ1网络、LVQ2网络所构建的分类器模型,试验表明LVQ2网络能够得到理想的分类效果.
关键词:
中厚板
,
表面缺陷
,
表面检测
,
神经网络
马凤春
物理测试
引入核方法分析研究了现有的板坯表面缺陷识别方法,提出了一种新的核函数,并将其应用到板坯表面缺陷特征提取中,用传统的支持向量机对图像进行分类,试验结果表明,新核函数提取的特征识别效果最好,识别率达到了91.55%.
关键词:
板坯
,
表面检测
,
支持向量机
,
核主成分分析
,
核函数