{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用一种数值方法分析压电材料切口尖端包括奇异应力场和奇异电位移场在内的双重奇异性.基于切口尖端的位移场按幂级数渐近展开假设,从应力平衡方程和Maxwell方程出发,推导出关于压电材料切口奇性指数的特征方程组,同时将切口的力学和电学边界条件转化为奇性指数和特征函数的组合表达,从而将压电材料双重奇性分析问题转化为在相应边界条件下微分方程组的特征值求解问题,采用插值矩阵法,可以一次性地计算出压电材料切口的各阶奇性指数.裂纹作为切口的特例,其尖端的电弹性奇性指数亦可以根据本法求出.","authors":[{"authorName":"程长征","id":"ac87b673-f44b-44a8-82fe-4414e775cc23","originalAuthorName":"程长征"},{"authorName":"程香","id":"14c4aa46-513d-4a4d-a6cf-449b449027ef","originalAuthorName":"程香"},{"authorName":"牛忠荣","id":"9c3cfc4d-d7dd-430f-98e4-02bcddc2be71","originalAuthorName":"牛忠荣"},{"authorName":"周焕林","id":"f4562e34-70da-4119-9fec-7e6be9947851","originalAuthorName":"周焕林"}],"doi":"","fpage":"206","id":"cc0b5bf5-385c-4b69-b5bd-4074863eb344","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"7733252e-e8cd-4f1b-835e-68861812184b","keyword":"压电材料","originalKeyword":"压电材料"},{"id":"a4115927-115b-4e92-915c-ca1c6c922f22","keyword":"切口","originalKeyword":"切口"},{"id":"551e9c31-8e90-4aa9-bc10-e742b1f59b3a","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"747aa25c-1c8e-4ad7-b239-6ff800a7a590","keyword":"奇性指数","originalKeyword":"奇性指数"},{"id":"cdb1c740-363f-48a4-8a14-ebb848fb96da","keyword":"渐近展开","originalKeyword":"渐近展开"}],"language":"zh","publisherId":"fhclxb201302032","title":"压电材料切口奇性指数计算","volume":"30","year":"2013"},{"abstractinfo":"为了了解微重力下水平温度梯度作用时环形浅液池内的热毛细对流特征,采用渐近线方法求得了环形浅液池内热毛细对流的近似解析解,得到了主流区速度场和温度场的表达式,并与数值模拟结果进行了比较,两者基本吻合.","authors":[{"authorName":"赵新兴","id":"a770512f-bdf8-435b-a952-2262bde46ea7","originalAuthorName":"赵新兴"},{"authorName":"李友荣","id":"281beb8e-cd76-4e86-b870-f416971c371a","originalAuthorName":"李友荣"},{"authorName":"彭岚","id":"f45064d4-df4d-4bdd-88c5-2b6869ee19cc","originalAuthorName":"彭岚"},{"authorName":"吴双应","id":"f8714f32-b5e7-4dbd-b2e3-c6394147ceb1","originalAuthorName":"吴双应"},{"authorName":"曾丹苓","id":"7f7af847-7733-4381-a4d7-86f06d533ad1","originalAuthorName":"曾丹苓"}],"doi":"","fpage":"676","id":"45880c94-7dd6-421e-944e-4f25d5a83233","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"70d0e178-9bc7-4309-8cd3-d3cd94a8d335","keyword":"热毛细对流","originalKeyword":"热毛细对流"},{"id":"8d1c75dd-bb0c-4efc-9638-74fb0b42818a","keyword":"渐近解","originalKeyword":"渐近解"},{"id":"d2970b16-3ed4-4d20-84e9-57f012e6a5c5","keyword":"环形浅液池","originalKeyword":"环形浅液池"}],"language":"zh","publisherId":"gcrwlxb200704043","title":"环形浅液池内热毛细对流的渐近解","volume":"28","year":"2007"},{"abstractinfo":"基于变分渐近均匀化理论框架建立可预测复合材料有效湿热弹性性能和单胞内局部场分布的细观力学模型。从推导复合材料湿热弹性自由能泛函出发,利用细、宏观尺度比作为小参数对自由能泛函的主导变分项进行渐近分析,得到湿热弹性问题的系列细观力学模型和局部场分布的重构关系,并通过有限元数值方法实现。与ABAQUS有限元算例的对比表明:构建的细观力学模型可有效准确地预测复合材料有效湿热弹性属性和局部场分布。","authors":[{"authorName":"钟轶峰","id":"ec75957e-5ab3-40e6-921a-c100e55d142f","originalAuthorName":"钟轶峰"},{"authorName":"秦文正","id":"56e564c6-205c-490d-b863-5426133fdff4","originalAuthorName":"秦文正"},{"authorName":"张亮亮","id":"26d26255-0d50-40a3-bd61-1bc9edf7b928","originalAuthorName":"张亮亮"},{"authorName":"周小平","id":"c7e3796b-3dad-4dac-b4a9-badd2de4e9bc","originalAuthorName":"周小平"}],"doi":"10.13801/j.cnki.fhclxb.20160118.002","fpage":"2197","id":"e211245a-7f1a-4635-a45b-112eaa36ccea","issue":"10","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a4a87c3c-6011-49cb-8183-d4f3f254a2ea","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"265f0f27-4e97-426c-906f-0d8b5c357566","keyword":"湿热弹性","originalKeyword":"湿热弹性"},{"id":"7bce15df-b5b4-4d98-a1af-5337c773aeee","keyword":"细观力学","originalKeyword":"细观力学"},{"id":"81833f54-fcb4-4d9b-ae98-7776ec055af4","keyword":"变分渐近法","originalKeyword":"变分渐近法"},{"id":"726d2ed7-1529-4193-a0e7-737434d461af","keyword":"均匀化","originalKeyword":"均匀化"}],"language":"zh","publisherId":"fhclxb201610008","title":"复合材料湿热弹性性能的变分渐近细观力学模型","volume":"33","year":"2016"},{"abstractinfo":"在基于相位分析的三维测量系统中,为了准确地得到物体的高度,相位展开扮演着很重要的角色.传统的相位展开方法常常需要额外的投影图,而傅里叶变换轮廓术只需要采集一幅或两幅变形条纹图就可以实现对物体轮廓的测量,其方法速度快,易于实现.针对傅里叶变换轮廓术方法计算得到的截断相位分布,本文提出了一种利用截断相位与参考平面相位差值2π的整数倍数获得截断相位的正确级次,辅助相位展开的方法.当被测物体较复杂,或者相位截断次数较多时,该方法在已有参考平面相位的基础上虚拟新的相位平面,依次比较截断相位和虚拟相位,进行多次分级相位展开,结合多个展开相位结果,最终得到正确的展开相位.该方法展开速度快,展开错误不会蔓延传递.仿真和实物实验结果证明了该方法的可行性,说明该方法可用于傅里叶变换轮廓术中进行截断相位的快速展开.","authors":[{"authorName":"李凤娇","id":"b8dfbe54-3522-4550-97f9-c17cbe64a407","originalAuthorName":"李凤娇"},{"authorName":"张启灿","id":"9c11cc4e-d2d2-4811-944c-c7422afe400c","originalAuthorName":"张启灿"},{"authorName":"刘守起","id":"ae02a1da-5b9d-49cc-a743-9e7fa7747a84","originalAuthorName":"刘守起"},{"authorName":"吴应山","id":"ee28132c-a0ff-470d-868f-a02009ea3487","originalAuthorName":"吴应山"}],"doi":"10.7517/j.issn.1674-0475.2017.02.185","fpage":"185","id":"ed5c441f-1448-4485-9ff2-3d7c5a4282c4","issue":"2","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"cbb96383-771f-49ee-b810-8a8ebc42f26e","keyword":"相位展开","originalKeyword":"相位展开"},{"id":"1e599c33-2a11-493a-8d18-b7cf30b43659","keyword":"三维面形测量","originalKeyword":"三维面形测量"},{"id":"cb95fc04-3877-4293-b55e-a1494c31dc96","keyword":"傅里叶变换轮廓术","originalKeyword":"傅里叶变换轮廓术"},{"id":"58086ee0-e0f6-4402-a666-f04708b4cfe2","keyword":"虚拟相位平面","originalKeyword":"虚拟相位平面"},{"id":"7e62cedc-b563-4976-9198-65f53652f139","keyword":"高度重建","originalKeyword":"高度重建"}],"language":"zh","publisherId":"ggkxyghx201702014","title":"基于虚拟相位平面的相位展开方法","volume":"35","year":"2017"},{"abstractinfo":"为了了解水平温度梯度作用下环形浅液池内浮力-热毛细对流的基本特性,采用渐近线方法获得了环形浅液池内浮力-热毛细对流的近似解析解,得到了主流区速度场和温度场的表达式,通过与数值模拟结果的比较表明,所得结果是合理的.","authors":[{"authorName":"李友荣","id":"5890126b-23b4-421f-ba20-b82df5effc47","originalAuthorName":"李友荣"},{"authorName":"欧阳玉清","id":"a5b2126f-53c1-45cc-a733-74c973dbd70f","originalAuthorName":"欧阳玉清"},{"authorName":"王双成","id":"62011b15-6df7-408d-ae44-9702366ea414","originalAuthorName":"王双成"},{"authorName":"吴双应","id":"99750b4f-282b-45af-a1ba-ce986c11898c","originalAuthorName":"吴双应"}],"doi":"","fpage":"1921","id":"9e5c92d7-d408-4b4c-baf3-11819058e314","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"852bc53a-b5e5-4e8a-9fb2-53bbff038850","keyword":"环形浅液池","originalKeyword":"环形浅液池"},{"id":"fbf4d5a2-9b21-4444-94e1-6349aeba24da","keyword":"浮力-热毛细对流","originalKeyword":"浮力-热毛细对流"},{"id":"d0ff8e51-2bc3-45ba-a0cb-c30b48e38b2f","keyword":"渐近解","originalKeyword":"渐近解"}],"language":"zh","publisherId":"gcrwlxb201011031","title":"环形浅液池内浮力-热毛细对流的渐近解","volume":"31","year":"2010"},{"abstractinfo":"基于变分渐近法建立具有周期性微结构的金属基复合材料(MMC s )细观力学模型及相应的增量方程,以准确预测其典型的热弹塑性行为和初始屈服面。利用细、宏观尺度比很小的特点,对单胞变分能量泛函变化进行渐近扩展,计算得到有效瞬时弹塑性刚度矩阵和热应力矩阵;利用迭代均质化及局域化技术模拟 MMC s 的非线性热弹塑性性能,并通过有限元技术实现相应的数值模型。算例分析表明:该模型能较好地预测 MMC s 的初始屈服面,并模拟热弹塑性耦合行为,研究成果为 MMC s的进一步研究和实际应用提供了技术支撑。","authors":[{"authorName":"钟轶峰","id":"ca2e82c9-8ee7-4b5f-b5d9-d046f39097ef","originalAuthorName":"钟轶峰"},{"authorName":"刘国天","id":"b1913eb8-4f13-4d30-b6fa-f7f5e0e52284","originalAuthorName":"刘国天"},{"authorName":"周小平","id":"f5adc621-7b5e-458b-8c66-408c6328d6c7","originalAuthorName":"周小平"},{"authorName":"张亮亮","id":"d2382709-d20d-4f20-ba80-d92b03631e03","originalAuthorName":"张亮亮"}],"doi":"10.13801/j.cnki.fhclxb.20150824.003","fpage":"1500","id":"cbd2b405-6aed-4c5d-b552-93fa89bf4736","issue":"7","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"23450c5b-859c-4712-bef9-ac7ae1ff77eb","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"},{"id":"d3662ff4-2a32-4eb4-9e41-3a22c185fd2d","keyword":"热弹塑性性能","originalKeyword":"热弹塑性性能"},{"id":"c2bd3a2f-d306-40bb-b3ca-b1ae3b5f1126","keyword":"变分渐近法","originalKeyword":"变分渐近法"},{"id":"aeb95925-0efa-4911-b531-9438edd2f191","keyword":"细观力学模型","originalKeyword":"细观力学模型"},{"id":"355f6b2a-065f-46d6-bd89-62ff950b3cf1","keyword":"均匀化","originalKeyword":"均匀化"}],"language":"zh","publisherId":"fhclxb201607021","title":"金属基复合材料热弹塑性变分渐近细观力学模型","volume":"33","year":"2016"},{"abstractinfo":"为有效模拟和准确重构复合材料层合板三维应力/应变/变形场,基于变分渐近方法构建单斜对称的复合材料层合板渐近修正理论和重构关系.主要内容包括:基于旋转张量分解概念用一维广义应变和翘曲表示板的三维应变场,以考虑包括板翘曲变形在内的所有变形;基于变分渐近法将原三维问题分析严格拆分为非线性二维板分析(等效单层板模型)和沿法线方向的一维线性分析;通过层合板厚跨比和二维应变量阶数2个较小参数将应变能渐近修正到第二阶,并转换为Reissner形式以便于实际应用;利用生成的二维板变形和翘曲函数精确重构三维场.通过一具有20层复合层合板的柱形弯曲算例表明:基于该理论和重构过程开发的渐近变分程序VAPAS重构生成的三维应力场精确性较一阶剪切变形理论和古典层合理论更好,与三维有限元精确解相一致.","authors":[{"authorName":"钟轶峰","id":"d93ff3d4-1e20-4040-938e-9fca283ead8a","originalAuthorName":"钟轶峰"},{"authorName":"YU Wenbin","id":"9d6b1787-2506-4719-b67b-f30917eba6f8","originalAuthorName":"YU Wenbin"}],"doi":"","fpage":"174","id":"a20018f4-f433-4735-9bba-d992532e1240","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a75587ce-21d4-44df-bc3e-6f212f4a3d4f","keyword":"变分渐近法","originalKeyword":"变分渐近法"},{"id":"1a8c8cbc-7858-4a84-b1ae-dad720825ca8","keyword":"复合材料层合板","originalKeyword":"复合材料层合板"},{"id":"08f0b894-2fae-43c8-8fb7-a23c770681c3","keyword":"应力重构","originalKeyword":"应力重构"},{"id":"02e01db8-3f8d-4639-8979-4313cfb04002","keyword":"Reissner模型","originalKeyword":"Reissner模型"}],"language":"zh","publisherId":"fhclxb201004028","title":"用变分渐近法进行复合材料层合板仿真及三维场重构","volume":"27","year":"2010"},{"abstractinfo":"在文献[1]中,雷达罩变厚度蜂窝展开加工后被铺贴到模具上.本文针对蜂窝中的应力应变,运用几何学及力学的综合方法进行力学推导,得到蜂窝的应力应变数据,并确定雷达罩蜂窝展开加工的力学约束条件,从而对不同的雷达罩蜂窝材料加工的合理尺寸给出合理的判据.这种方法避免了传统的有限元方法中的复杂的有限元建模过程,也避免了有限元计算中的误差.在针对FEMAP程序二次开发后,本文的计算结果在FEMAP(参考文献[2])有限元软件中得到形象的显示,使二次开发的程序与有限元模型之间相互联通.","authors":[{"authorName":"李兴德","id":"5ca3d51a-b656-4a3a-ae30-35ae882ad713","originalAuthorName":"李兴德"},{"authorName":"周春苹","id":"888a8e0b-894c-404a-9730-9184124045e2","originalAuthorName":"周春苹"},{"authorName":"裘进浩","id":"b480ab4d-25c1-4cf8-a2e9-24401dc23c8a","originalAuthorName":"裘进浩"}],"doi":"","fpage":"70","id":"793733b7-4eec-4032-a135-c3b83b742a4e","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"bed38f0c-1b8f-4cac-b466-c1bb0e9c75d4","keyword":"变厚度","originalKeyword":"变厚度"},{"id":"7a4f0686-cc33-441a-9fde-1e60f7fbcf3c","keyword":"蜂窝材料","originalKeyword":"蜂窝材料"},{"id":"afd2f8ac-e9cc-4490-9cb8-df7c22223057","keyword":"夹层结构雷达罩","originalKeyword":"夹层结构雷达罩"},{"id":"dff776d8-9ca7-40df-97a6-7aea5b359ce6","keyword":"展开蜂窝加工","originalKeyword":"展开蜂窝加工"},{"id":"9d45052c-6aa9-44d3-9a0f-65b0eb7f5100","keyword":"力学约束条件","originalKeyword":"力学约束条件"}],"language":"zh","publisherId":"blgfhcl201406015","title":"雷达罩变厚度蜂窝展开加工的力学约束","volume":"","year":"2014"},{"abstractinfo":"针对射线法在展开具有弯曲特征的板金零件时常出现的展开方位错误以及展开区域重叠等问题,在充分考虑了具有弯曲特征的板金零件材料弯曲变形特点的基础上,提出了以多参考点分区展开的思路和方法,建立了能考虑板金零件弯边外法向方向的射线分区展开算法,以此体现材料的弯曲变形特征,通过实例测试,所提出的展开算法高效、实用,并有效解决了展开方位错误和展开区域重叠问题,所得到的零件毛坯形状合理正确,为一步法快速分析优化提供了良好的初值.","authors":[{"authorName":"吴建军","id":"98f4fb87-d6bb-47ff-bc7c-3fba17d44f64","originalAuthorName":"吴建军"},{"authorName":"薛小平","id":"e34e4a22-bb89-433c-817b-194f54a5b7a9","originalAuthorName":"薛小平"}],"doi":"","fpage":"450","id":"7a1b3e7b-4932-4e0a-a1d0-80bc61622528","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"582d36cb-b893-42db-92af-253c205c415d","keyword":"射线法","originalKeyword":"射线法"},{"id":"84ecd045-20f7-43ab-9298-ee6bd10ee9a7","keyword":"法向","originalKeyword":"法向"},{"id":"468fb86e-0354-441c-a95d-076c2ac69baa","keyword":"多参考点","originalKeyword":"多参考点"}],"language":"zh","publisherId":"clkxygy200904002","title":"多参考点板金零件展开方法研究","volume":"17","year":"2009"},{"abstractinfo":"为准确预测非均质复合材料的有效热导率和局部温度场分布,采用单胞变分渐近均匀化方法构建了一种新的细观力学模型.首先从非均质连续体热传导变分问题入手,使用变分渐近法将其细观力学模型转换为约束条件下泛函的最小化——取驻值问题;使用有限元法(FEM)推导了离散形式能量泛函的最小化求解过程;根据宏观性能(如全局温度及相应的梯度和波动函数)重构单胞的局部温度场和热通量.采用多个二元复合材料算例验证了所构建理论和程序的有效性和准确性.","authors":[{"authorName":"钟轶峰","id":"1d9ef8b9-5dea-4c5f-9645-1074f37e6e60","originalAuthorName":"钟轶峰"},{"authorName":"张亮亮","id":"cfa15cee-066e-477a-a704-cb3247de9723","originalAuthorName":"张亮亮"},{"authorName":"周小平","id":"20c22ba5-3348-466e-9e69-ffff837d7c4e","originalAuthorName":"周小平"},{"authorName":"矫立超","id":"a2706809-2cc8-4504-a514-5e6c0209f80e","originalAuthorName":"矫立超"}],"doi":"10.13801/j.cnki.fhclxb.20141010.001","fpage":"1173","id":"015a3e67-6fd7-4773-8e74-527edd77db82","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"2726530c-3d96-401f-a2f3-b80ffd65671c","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"7b26fbf5-17bf-4545-885d-c8598aca674b","keyword":"热传导","originalKeyword":"热传导"},{"id":"c440ca07-29c7-4870-91b9-e1e8c0a02235","keyword":"变分渐近法","originalKeyword":"变分渐近法"},{"id":"bdf84d4e-906b-4460-b60a-fd3817178242","keyword":"非均质","originalKeyword":"非均质"},{"id":"f99e9aee-584f-42cc-a3a4-7ff2d4a1194a","keyword":"细观力学模型","originalKeyword":"细观力学模型"}],"language":"zh","publisherId":"fhclxb201504033","title":"复合材料热传导性能的变分渐近均匀化细观力学模型","volume":"32","year":"2015"}],"totalpage":50,"totalrecord":493}