{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用等离子表面冶金技术,在金刚石自支撑膜表面制备了W金属层.借助扫描电子显微镜(SEM)、能谱仪(EDS)和X-射线衍射仪(XRD)等分别对金属化后的金刚石膜的微观形貌、元素分布及物相组成进行了表征与分析;并通过测试Ag-Cu钎焊的金刚石膜-硬质合金刀片样品的剪切强度,评价金属层与金刚石膜的结合强度.实验结果表明:所制备的W金属层连续、致密,由大量纳米尺度的颗粒状团聚物构成;在金属层与金刚石界面一定深度区域内,存在W和C元素的相互扩散,并且反应生成了WC、W2C等金属碳化物颗粒,表明金属层与金刚石膜之间已形成了牢固的化学键合.","authors":[{"authorName":"高雪艳","id":"3c335068-5eb7-4b43-85f5-df63c34bfef9","originalAuthorName":"高雪艳"},{"authorName":"钟强","id":"a4019ef7-7b85-4a18-aaa3-0ce8089d605f","originalAuthorName":"钟强"},{"authorName":"李晓静","id":"f5dd83f5-223f-4cb8-82e7-3187a78dc950","originalAuthorName":"李晓静"},{"authorName":"黑鸿君","id":"51a4d58f-f357-4144-bd04-98d6665c48b4","originalAuthorName":"黑鸿君"},{"authorName":"高洁","id":"3affc169-b828-476a-8cdd-d47b8495b93d","originalAuthorName":"高洁"},{"authorName":"申艳艳","id":"fbddbd72-f062-4643-abc7-0a93c95c982b","originalAuthorName":"申艳艳"},{"authorName":"贺志勇","id":"f47ec835-8771-4b4b-a397-53efea266792","originalAuthorName":"贺志勇"},{"authorName":"刘小萍","id":"55945a0c-1b71-400c-8c75-62c5c9a44a52","originalAuthorName":"刘小萍"},{"authorName":"于盛旺","id":"225fc7dc-5efa-4d03-8de3-02ebc5a21d9e","originalAuthorName":"于盛旺"}],"doi":"","fpage":"2385","id":"effdf961-7742-44c9-a108-112dfff289d1","issue":"9","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"01684e2f-1a04-4f56-ab02-068c4ec9721c","keyword":"金刚石自支撑膜","originalKeyword":"金刚石自支撑膜"},{"id":"c36eeee3-d253-4b9f-a134-ba4b9d0345df","keyword":"等离子表面冶金技术","originalKeyword":"双辉等离子表面冶金技术"},{"id":"d3935475-ec72-44bd-b71e-8730e43afb8e","keyword":"W金属层","originalKeyword":"W金属层"},{"id":"af95c36f-b2aa-4732-a9bf-23fb44f89a16","keyword":"元素扩散","originalKeyword":"元素扩散"}],"language":"zh","publisherId":"rgjtxb98201509012","title":"等离子体表面冶金金属化CVD金刚石自支撑膜研究","volume":"44","year":"2015"},{"abstractinfo":"为解决整体阻燃钛合金存在的比强度低、加工性差及价格昂贵等问题,利用双层辉光离子渗金属技术,在Ti-6Al-4V的表面渗入Cu元素,在其表面形成Ti-Cu阻燃合金层.研究了温度、保温时间、源极电压、工件电压、极间距等工艺参数对渗层显微组织、成分及厚度的影响,得出了适合的工艺参数.870℃渗铜3.5 h,渗层厚度可达到200μm以上.阻燃合金层的成分呈梯度分布,显微组织为基体组织加弥散分布的Ti2Cu金属间化合物.初步阻燃实验证明,渗Cu合金层起到了预期的阻燃效果.","authors":[{"authorName":"张平则","id":"887d422c-a1a3-4ddb-8668-a525c0572985","originalAuthorName":"张平则"},{"authorName":"徐重","id":"8dfa1e49-d660-4acd-a56d-66293b1b9ebf","originalAuthorName":"徐重"},{"authorName":"张高会","id":"06c944e1-7d84-4a32-8bad-38bab3263a50","originalAuthorName":"张高会"},{"authorName":"贺志勇","id":"861d5a7b-a818-4c94-b49f-eaef646bed62","originalAuthorName":"贺志勇"}],"doi":"","fpage":"110","id":"ba316310-d035-4465-86cb-d9720b156a0c","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"85e5a540-011e-48bb-8d20-86d41e94b5c3","keyword":"阻燃钛合金","originalKeyword":"阻燃钛合金"},{"id":"7fd9b694-3d3a-4be6-ad45-e58eb48eb82a","keyword":"双层辉光离子渗金属技术","originalKeyword":"双层辉光离子渗金属技术"},{"id":"90bd5e7a-dfa9-4471-bcee-eee9f26241dc","keyword":"表面合金化","originalKeyword":"表面合金化"},{"id":"eb229d3f-0301-4e38-8ba2-c1a4054f6697","keyword":"渗铜","originalKeyword":"渗铜"}],"language":"zh","publisherId":"zgysjsxb200501019","title":"等离子表面冶金Ti-Cu阻燃合金的制备工艺","volume":"15","year":"2005"},{"abstractinfo":"采用等离子渗铬技术,首先在560℃对T10钢进行不同时间的渗铬,再对已渗铬试样进行4h离子氮化,研究了该工艺对渗镀铬层硬化效果的影响.结果表明:渗铬后的渗层由厚3~5μm的沉积层+扩散层组成,沉积层组织致密并与基体结合良好,基体组织和晶粒度与渗铬前基本一致;沉积层铬浓度达45%(质量分数)以上,内有20~25μm的扩散层,铬浓度向内呈梯度分布;表面物相均由Fe,Fe-Cr,Cr7C3,Cr23C6等组成;渗层表面显微硬度达650~850HV,向内逐步降低,呈梯度分布.沉积层厚度、渗层深度、渗层的铬浓度及显微硬度等均随渗铬时间的增加而增加.渗层经离子氮化后的组织与氮化前的组织无明显变化,但表面物相为Fe-Cr,Cr7C3,Cr23C6,CrN,Fe4N,表面显微硬度提高到1000~1350HV,较未氮化前提高约60%以上.","authors":[{"authorName":"郑英","id":"58f6e608-00cb-4fdb-97f6-58c6b94ff0a5","originalAuthorName":"郑英"},{"authorName":"高原","id":"a6bc2349-f708-4389-8823-3a2935e05a87","originalAuthorName":"高原"}],"doi":"10.3969/j.issn.1001-4381.2009.03.017","fpage":"69","id":"65892722-d5f0-4749-9480-ad53aea58fb7","issue":"3","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"65ab48dd-dec6-4477-929f-2d4a369f93d1","keyword":"T10钢","originalKeyword":"T10钢"},{"id":"69a46a4d-7665-45fe-ae75-2b42ae7c5894","keyword":"双层辉光","originalKeyword":"双层辉光"},{"id":"734f4dbc-d32e-4d7c-8e50-97432732c454","keyword":"渗镀铬","originalKeyword":"渗镀铬"},{"id":"0683385b-be3a-414f-868c-cf3d2cf1719e","keyword":"离子氮化","originalKeyword":"离子氮化"}],"language":"zh","publisherId":"clgc200903017","title":"T10钢低温等离子表面渗镀铬硬化的研究","volume":"","year":"2009"},{"abstractinfo":"采用双层辉光等离子表面冶金技术在Q235钢表面制备Ni-Cr合金渗层,对合金渗层的组织特征、成分和耐蚀性能进行了研究.结果表明:Ni-Cr合金渗层与基体呈现良好的冶金结合状态;渗层中Ni,Cr元素含量由表及里逐渐减少,厚度约为30μm,渗层主要物相为Ni2.9Cr0.7Fe0.36.电化学极化试验表明经Ni-Cr共渗处理后试样的耐蚀性明显优于基材,且Ni-Cr合金渗层的保护效率高达99.7468%,而孔隙率仅有0.2%.","authors":[{"authorName":"黄俊","id":"19de5cd9-cd77-4526-b495-34a259426b1e","originalAuthorName":"黄俊"},{"authorName":"吴红艳","id":"ce9719cc-4bdc-4313-82c1-10fa61fb9b8f","originalAuthorName":"吴红艳"},{"authorName":"毕强","id":"155e4e39-a69b-49ce-b3fe-0c3bad4ddcda","originalAuthorName":"毕强"},{"authorName":"张平则","id":"4ef24bca-ecc8-4e83-88c8-cd30bc52cb74","originalAuthorName":"张平则"},{"authorName":"姜云东","id":"64007935-0467-4812-808c-294595d8c318","originalAuthorName":"姜云东"}],"doi":"10.3969/j.issn.1001-4381.2010.11.019","fpage":"79","id":"e2ce8a88-b008-405f-9066-94184caf77d0","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"682f7ccf-ebed-451d-b71f-35070db35c02","keyword":"双层辉光等离子冶金技术","originalKeyword":"双层辉光等离子冶金技术"},{"id":"a86a91ad-b539-4f9f-a03f-d8f80e43811b","keyword":"Ni-Cr合金渗层","originalKeyword":"Ni-Cr合金渗层"},{"id":"11315f68-7e4a-45f9-81f8-b40328c8d64a","keyword":"Q235钢","originalKeyword":"Q235钢"},{"id":"886eee26-4818-4502-baff-f21b3b8337f3","keyword":"极化曲线","originalKeyword":"极化曲线"},{"id":"c17aefec-73fb-4433-a908-0ecceb51bce9","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clgc201011019","title":"等离子表面Ni-Cr合金渗层的组织及耐蚀性能研究","volume":"","year":"2010"},{"abstractinfo":"用等离子表面冶金技术在Q235钢表面制备Ta改性层。用XRD,SEM,EDS,电化学腐蚀和中性盐雾试验分析Ta改性层的组织特征、成分和耐蚀性能。结果表明,Ta改性层与基体结合良好,厚度为32μm左右。改性层中Ta元素含量呈梯度分布,主要物相为α-Ta。等离子表面渗Ta处理后试样的耐蚀性明显优于基材。","authors":[{"authorName":"毕强","id":"6ff8f36d-bc5a-402c-8585-0d75ecb4d544","originalAuthorName":"毕强"},{"authorName":"张平则","id":"d9e5115f-a621-41e5-bca9-a139697985bb","originalAuthorName":"张平则"},{"authorName":"黄俊","id":"9b8a5858-161d-481b-a7db-2d828193beb7","originalAuthorName":"黄俊"},{"authorName":"魏东博","id":"6fa56b9e-c8a8-4902-9189-407e85908135","originalAuthorName":"魏东博"},{"authorName":"李伟","id":"7d15e3d5-801c-4d17-8662-5ebc03e5235c","originalAuthorName":"李伟"}],"doi":"","fpage":"364","id":"04788188-da9c-4551-9ce5-307cce18d599","issue":"5","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"bcdcdc5b-61fe-4e91-a577-6578116364b9","keyword":"等离子表面冶金","originalKeyword":"双辉等离子表面冶金"},{"id":"4cecf85c-db80-4d52-9ff4-ebbb734a3b6b","keyword":"Ta改性层","originalKeyword":"Ta改性层"},{"id":"bd813d52-e9c4-47d2-be5c-0a58c68941af","keyword":"极化曲线","originalKeyword":"极化曲线"},{"id":"34c2818d-db06-494c-92e2-faa8f2e4a186","keyword":"电化学阻抗","originalKeyword":"电化学阻抗"},{"id":"329923ef-2fa5-43cf-a5ab-97c303b14a5c","keyword":"中性盐雾试验","originalKeyword":"中性盐雾试验"},{"id":"701db2ad-9c56-44d5-ab06-232402e61e2a","keyword":"抗腐蚀性","originalKeyword":"抗腐蚀性"}],"language":"zh","publisherId":"zgfsyfhxb201205002","title":"等离子渗Ta改性层的组织及耐蚀性","volume":"32","year":"2012"},{"abstractinfo":"用等离子表面冶金技术在Q235钢表面制备Ta改性层。用XRD,SEM,EDS,电化学腐蚀和中性盐雾试验分析Ta改性层的组织特征、成分和耐蚀性能。结果表明,Ta改性层与基体结合良好,厚度为32μm左右。改性层中Ta元素含量呈梯度分布,主要物相为α-Ta。等离子表面渗Ta处理后试样的耐蚀性明显优于基材。","authors":[{"authorName":"毕强","id":"9cd16206-821d-442e-942f-0ecb0c01e166","originalAuthorName":"毕强"},{"authorName":"张平则","id":"1e1cb97a-32e5-4dfb-825d-ce3708e895d5","originalAuthorName":"张平则"},{"authorName":"黄俊","id":"9c454803-c8b2-47b7-bd32-557abc6da0e7","originalAuthorName":"黄俊"},{"authorName":"魏东博","id":"4ce093c9-3b45-4e41-9d2b-90371a44df00","originalAuthorName":"魏东博"},{"authorName":"李伟","id":"ede451be-6288-4af7-bbd5-34b39441e6f1","originalAuthorName":"李伟"}],"doi":"","fpage":"364","id":"79872c24-24c8-4cad-bd0c-d18238fc5ad4","issue":"5","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"3e43295e-63e5-42c9-94ca-1dff2e0e60a3","keyword":"等离子表面冶金","originalKeyword":"双辉等离子表面冶金"},{"id":"feb07ee5-e864-40c4-8b6d-407482a1dbc3","keyword":"Ta改性层","originalKeyword":"Ta改性层"},{"id":"1a4f0e47-0ae1-45d8-8d25-394918cf19fe","keyword":"极化曲线","originalKeyword":"极化曲线"},{"id":"9742a349-5143-4a9e-a56c-de7dc4b7b945","keyword":"电化学阻抗","originalKeyword":"电化学阻抗"},{"id":"576efea6-346b-41ef-9f2a-7a828ae90779","keyword":"中性盐雾试验","originalKeyword":"中性盐雾试验"},{"id":"8fa24d50-9bd3-4294-acd9-406af82eafc8","keyword":"抗腐蚀性","originalKeyword":"抗腐蚀性"}],"language":"zh","publisherId":"zgfsyfhxb201205002","title":"等离子渗Ta改性层的组织及耐蚀性","volume":"32","year":"2012"},{"abstractinfo":"利用等离子渗金属技术在0Cr18Ni9Ti奥氏体不锈钢表面制备了一层均匀、致密、呈良好冶金结合的渗锆合金层,并对1 060℃下的渗锆动力学进行了研究.结果表明:随着距锆合金层表面距离的增加,锆元素的含量呈梯度递减,扩散系数逐渐减小,而扩散激活能逐步增大;在1 060℃采用等离子技术渗锆时,渗锆合金层表层的空位密度为2.945×(1012~1013) cm-2,与相同温度下采用常规渗金属工艺相比,提高了1~2个数量级.","authors":[{"authorName":"蔡航伟","id":"a091e9c4-9002-4a04-bade-a5bacfa06da8","originalAuthorName":"蔡航伟"},{"authorName":"高原","id":"38a25197-706b-4716-8d4f-ef1a270621a1","originalAuthorName":"高原"},{"authorName":"马志康","id":"70b0b632-0ee3-478f-8229-8dca07977124","originalAuthorName":"马志康"},{"authorName":"王成磊","id":"3c4a53e6-72b3-4245-aab4-700ee3b6424a","originalAuthorName":"王成磊"}],"doi":"","fpage":"102","id":"5182de97-5752-483d-9c0f-2ebff1e73b51","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"6754e55d-e026-464f-ae4b-95bac288d85e","keyword":"等离子渗金属技术","originalKeyword":"双辉等离子渗金属技术"},{"id":"5f065636-93bd-4855-829e-93e8ecd41102","keyword":"渗锆合金层","originalKeyword":"渗锆合金层"},{"id":"6d236011-d504-4e35-bd90-2185a7b7baf2","keyword":"离子轰击","originalKeyword":"离子轰击"},{"id":"940bb8c1-2d3c-4947-9141-0f92390b78d9","keyword":"动力学","originalKeyword":"动力学"},{"id":"b07375ab-d70e-462e-a8c4-5de8cc3452f9","keyword":"空位密度","originalKeyword":"空位密度"}],"language":"zh","publisherId":"jxgccl201501023","title":"奥氏体不锈钢表面等离子渗锆的动力学","volume":"39","year":"2015"},{"abstractinfo":"研究了等离子表面冶金技术冶金过程,分析了冶金过程的特点.该过程是一个分阶段、连续过程;并研究了等离子表面冶金铁基合金的物理化学反应过程.最后得出等离子表面冶金过程的一般规律,用于指导该项技术的应用.","authors":[{"authorName":"刘邦武","id":"a0f3583d-31e8-4777-89cb-b763ae9e1fc0","originalAuthorName":"刘邦武"},{"authorName":"李惠琪","id":"484abd1a-7f58-4425-b538-99d69453b263","originalAuthorName":"李惠琪"},{"authorName":"张丽民","id":"80cd2a29-f9f4-4884-a900-2cdefaa07a6c","originalAuthorName":"张丽民"},{"authorName":"李敏","id":"63911aeb-e87f-439d-b0c4-173d0de60a3f","originalAuthorName":"李敏"}],"doi":"","fpage":"192","id":"bdb9ba03-bf79-44ab-aadf-3a470b6246f7","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7168bef5-f5f8-444c-8ce6-3dba4c8d58ad","keyword":"等离子表面冶金","originalKeyword":"等离子束表面冶金"},{"id":"b0b5cbcd-2d26-47d5-ad22-9382ddfe58ca","keyword":"冶金反应","originalKeyword":"冶金反应"},{"id":"f9d06431-0247-4d0f-99ac-d8a380111cb3","keyword":"微合金化","originalKeyword":"微合金化"}],"language":"zh","publisherId":"cldb2004z2058","title":"等离子表面冶金技术冶金过程研究","volume":"18","year":"2004"},{"abstractinfo":"采用等离子表面冶金技术,在Q235钢表面获得铁基冶金层,并对其进行磨粒磨损实验。实验结果表明,冶金层耐磨性比淬火45号钢有较大提高。等离子表面冶金层磨粒磨损机制主要为两种类型:①塑性变形-切削;②断裂-剥落。磨损过程为两种机制综合作用的结果,冶金层组织对磨粒磨损机制有显著影响。","authors":[{"authorName":"张丽民","id":"c83fdc88-0375-4230-be25-22b74111d9c6","originalAuthorName":"张丽民"},{"authorName":"李惠琪","id":"5a9f8392-1d5e-4f3f-92fa-3022f9cb1581","originalAuthorName":"李惠琪"},{"authorName":"刘邦武","id":"0c704804-fe89-4e54-8a48-2ec28da5c9ed","originalAuthorName":"刘邦武"},{"authorName":"李惠东","id":"a3e30a49-6a2b-4194-901a-f8df2593b645","originalAuthorName":"李惠东"},{"authorName":"孙冬柏","id":"651f777f-06fd-4551-b24a-dd1b64304641","originalAuthorName":"孙冬柏"}],"categoryName":"|","doi":"","fpage":"85","id":"5293d914-d6c0-49b7-80dc-b2610695d853","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"35259b47-0dde-404b-b894-fe6fa8c277dc","keyword":"等离子表面冶金;磨粒磨损;冶金层","originalKeyword":"等离子表面冶金;磨粒磨损;冶金层"}],"language":"zh","publisherId":"1001-0963_2007_3_17","title":"等离子表面冶金铁基合金层磨粒磨损机理","volume":"19","year":"2007"},{"abstractinfo":"用等离子渗铬技术,进行了880~900℃温度下的碳素工具钢表面渗铬硬化研究,分析了渗铬硬化层的显微组织和相结构,测量了渗铬硬化层的厚度、硬度及铬浓度分布,并对渗铬硬化层进行了划痕检验.结果表明,在880~900℃温度下,对碳素工具钢进行等离子渗铬也可得到良好的渗铬硬化层;渗铬硬化层由沉积层、碳化物层和固溶体层构成.","authors":[{"authorName":"池成忠","id":"dc3ee373-2936-4615-a18b-d8a1c47a4bef","originalAuthorName":"池成忠"},{"authorName":"高原","id":"7c50dd0b-5209-4e59-a795-df012fbd2b46","originalAuthorName":"高原"},{"authorName":"贺志勇","id":"3f454fe0-ce2e-4b1b-8d47-73cd051f841a","originalAuthorName":"贺志勇"},{"authorName":"徐重","id":"d3ea6f4b-b409-453a-86a2-d39f8c441d3c","originalAuthorName":"徐重"}],"doi":"10.3969/j.issn.1000-3738.2003.11.010","fpage":"30","id":"a6a2cb7d-c580-4fdb-b587-1f268efa3838","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"3be30edf-da8d-447c-ac72-7d8575559dcf","keyword":"表面合金化","originalKeyword":"表面合金化"},{"id":"2fa9ce79-c201-45c9-9971-e64b301d140b","keyword":"碳素工具钢","originalKeyword":"碳素工具钢"},{"id":"aa03430e-43d7-4c08-85d4-3a96c37349b7","keyword":"渗铬","originalKeyword":"渗铬"},{"id":"0aec616f-2dff-46e6-852f-436f9bfd6810","keyword":"硬化层","originalKeyword":"硬化层"}],"language":"zh","publisherId":"jxgccl200311010","title":"碳素工具钢表面低温等离子渗铬硬化的研究","volume":"27","year":"2003"}],"totalpage":8786,"totalrecord":87860}