{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用热力学计算软件和X射线衍射分析方法对高纯净SAE9310钢奥氏体化后平衡组织的转变规律进行了研究;采用膨胀法和金相法在F0rmastor-F Ⅱ型膨胀仪上测定了该钢的连续冷却转变曲线(CCT曲线).结果表明:SAE9310钢的平衡转变组织为α-Fe、γ-Fe以及M23 C6和M7 C3碳化物;在连续冷却转变过程中,当冷却速率小于0.056℃·s-1时,转变产物为粒状贝氏体和铁素体组织;当冷却速率介于0.056~1.9℃·s-1时,转变产物为粒状贝氏体和少量马氏体组织;当冷却速率大于1.9℃·s-1后,粒状贝氏体逐渐消失,转变产物主要为板条马氏体和少量残余奥氏体组织;钢的硬度随着冷却速率的增加而逐渐提高.","authors":[{"authorName":"厉勇","id":"f851b9de-9ee5-4cde-9ebc-c6985fe123f9","originalAuthorName":"厉勇"},{"authorName":"","id":"5d32fd62-d4b1-4d31-9c24-dbd45dc99529","originalAuthorName":"王春旭"},{"authorName":"刘宪民","id":"3f65c8b0-244f-4745-b97d-fda239d22e48","originalAuthorName":"刘宪民"},{"authorName":"田志凌","id":"f5c50c26-8b0f-49ff-a462-081e70e31f05","originalAuthorName":"田志凌"},{"authorName":"许广鹏","id":"6fcbbbc3-2bee-4b34-a1ec-719c1ff91664","originalAuthorName":"许广鹏"},{"authorName":"赵肃武","id":"7d00fed0-8021-413a-8e4c-543499a755b6","originalAuthorName":"赵肃武"}],"doi":"","fpage":"12","id":"05c59710-4792-4d7f-94a8-92ff87ef78f8","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"a8a9db1e-1a65-4e68-b415-393dbb839059","keyword":"SAE9310钢","originalKeyword":"SAE9310钢"},{"id":"d4eef17c-d664-4f3d-92cf-7e80b8e5741b","keyword":"组织转变","originalKeyword":"组织转变"},{"id":"0b6b881f-a531-42c9-8da9-5322f7285589","keyword":"CCT曲线","originalKeyword":"CCT曲线"},{"id":"0919b336-1541-4e5a-b5a0-14bcf6f4adca","keyword":"热力学计算","originalKeyword":"热力学计算"}],"language":"zh","publisherId":"jxgccl201005004","title":"SAE9310钢奥氏体的冷却转变行为","volume":"34","year":"2010"},{"abstractinfo":"采用Gleeble-3800型热力模拟试验机,在温度为1 123~1 423K、应变速率为0.01~10 s-1的条件下,对40CrNi2MoE钢进行了高温轴向单道次压缩变形试验,根据压缩试验结果绘制了高温塑性流变曲线,并观察了变形后的显微组织.结果表明:该钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;在真应变为0.9,应变速率为0.01 ~ 10 s-1的条件下,随着应变速率的提高,其发生完全动态再结晶的温度也逐渐升高;当应变速率为10 s-1,变形温度高于1 323 K时,该钢才会发生完全动态再结晶;计算得到40CrNi2MoE钢的热变形激活能为333.726 kJ·m01-1,并建立了该钢动态再结晶条件下峰值应变与Zener-Hollomon因子的定量关系以及高温塑性变形本构方程.","authors":[{"authorName":"苏新生","id":"905ce0f6-83f8-431f-8309-753adc105637","originalAuthorName":"苏新生"},{"authorName":"徐文帅","id":"adb9075f-492d-4bac-ac54-3b19eea116d4","originalAuthorName":"徐文帅"},{"authorName":"黄顺喆","id":"0fe13318-04b0-4e13-b079-5de7a5f09f07","originalAuthorName":"黄顺喆"},{"authorName":"","id":"8c3ff8df-25d3-4244-aca0-f66c89a175fa","originalAuthorName":"王春旭"},{"authorName":"厉勇","id":"1dedd839-93d2-4839-9a21-f61ecf285fdd","originalAuthorName":"厉勇"}],"doi":"10.11973/jxgccl201506018","fpage":"90","id":"07b2aee1-7291-467e-8078-37f5ef50b232","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"90e1b00a-5d9e-4679-be5e-192ba5eab228","keyword":"40CrNi2MoE钢","originalKeyword":"40CrNi2MoE钢"},{"id":"f6cad43b-2ffa-4588-9ce7-509d8b89070e","keyword":"塑性变形","originalKeyword":"塑性变形"},{"id":"105e62d6-2f2e-4008-9994-7f83ca94227c","keyword":"动态再结晶","originalKeyword":"动态再结晶"},{"id":"0c401211-d1f6-47b5-bf2c-1fc934a468be","keyword":"本构方程","originalKeyword":"本构方程"}],"language":"zh","publisherId":"jxgccl201506018","title":"40CrNi2MoE钢的高温塑性变形特征","volume":"39","year":"2015"},{"abstractinfo":"研究了不同氮含量的0Cr21Ni6Mn9N奥氏体不锈钢的塑性流变行为.结果表明,其形变强化特性可用Ludwigson模型来表示.钢在不同的应变下表现出不同的塑性流变行为,存在一个瞬变应变.当应变量低于它时,流变行为与Ludwik方程存在一个正偏差;而应变量高于它时,则符合Ludwik模型.造成这一差异的主要原因是位错滑移模式发生了改变,低于瞬变应变时为单系滑移,高于瞬变应变时为多系滑移.氮对位错滑移模式的影响主要表现为对瞬变应变的影响.随氮含量的增加,瞬变应变被推向更高的水平,这意味着氮原子使位错在更大的应变下才产生多系滑移和交滑移.","authors":[{"authorName":"刘树勋","id":"341b77e4-0e79-4b1b-9d73-4007075e532f","originalAuthorName":"刘树勋"},{"authorName":"刘宪民","id":"c326f29e-411f-40e3-a729-67f7c054fb35","originalAuthorName":"刘宪民"},{"authorName":"刘蕤","id":"05ccd203-6bc7-49a3-b700-f2530c6a5f32","originalAuthorName":"刘蕤"},{"authorName":"","id":"f5c9d18b-090f-4bb6-8740-62d02f912aef","originalAuthorName":"王春旭"},{"authorName":"邢峰","id":"bd964bab-7d61-4870-bc17-4b69824d7def","originalAuthorName":"邢峰"}],"doi":"","fpage":"40","id":"0ef47d22-e59c-4dad-8bde-a93a1643c308","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"aec5b4ad-1539-4d6b-8e39-e72021cfe995","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"33f0a5bb-4497-4666-9a57-d7eabc161842","keyword":"加工硬化","originalKeyword":"加工硬化"},{"id":"9ec2890b-d22d-47a4-99fc-0d0e94f8989c","keyword":"氮","originalKeyword":"氮"},{"id":"419c9e73-455c-4a3d-aae6-d6118942d0e8","keyword":"0Cr21Ni6Mn9N","originalKeyword":"0Cr21Ni6Mn9N"}],"language":"zh","publisherId":"gtyjxb200504010","title":"0Cr21Ni6Mn9N奥氏体不锈钢的应变强化行为","volume":"17","year":"2005"},{"abstractinfo":"通过调整AF1410钢Mo的质量分数到3.0%,得到试验钢,对试验钢不同时效温度的性能进行了初步的研究。试验结果表明,与AF1410钢相比较,当Mo的质量分数为3%时,试验钢的二次硬化效果显著,在460 ℃时效时达到硬化峰值,峰值硬度为HRC 53.5,比AF1410钢的峰值硬度提高了1.5(HRC)。","authors":[{"authorName":"李阿妮","id":"41622b7d-de6c-454f-8797-f8b674b75d75","originalAuthorName":"李阿妮"},{"authorName":"厉勇","id":"50653155-db42-4f5e-b6a3-da1a275ab5bb","originalAuthorName":"厉勇"},{"authorName":"","id":"04b645fc-9cd7-4bda-81e8-156681d3a245","originalAuthorName":"王春旭"},{"authorName":"刘宪民","id":"6dfafa44-b678-4ae2-a034-7f2cc886a51a","originalAuthorName":"刘宪民"}],"categoryName":"|","doi":"","fpage":"60","id":"21de0389-922f-428b-889a-3c52f8c72c15","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"175050cd-7be7-4176-a452-93b2bae4d282","keyword":"AF1410钢;Mo含量;力学性能;二次硬化","originalKeyword":"AF1410钢;Mo含量;力学性能;二次硬化"}],"language":"zh","publisherId":"0449-749X_2007_9_6","title":"Mo含量对AF1410钢二次硬化效果的影响","volume":"42","year":"2007"},{"abstractinfo":"通过拉伸、冲击和断裂韧性等力学试验方法,光学显微镜、SEM、TEM和XRD等分析测试方法以及热力学平衡计算方法,对一种发动机壳体用低合金超高强度钢(30Cr3)的组织和性能进行了研究.结果表明:试验钢30Cr3的室温平衡转变组织为?Fe和碳化物(包括MC、M23C6、M7C3);30Cr3钢具有很好的淬透性,正火处理后,主要得到马氏体组织;在回火过程中,?碳化物在马氏体板条内弥散析出.在试验条件下,30Cr3钢的抗拉强度和屈服强度随着回火温度的升高而逐渐提高,在250℃回火时,抗拉强度达到最大值1870MPa而随着回火温度的提高,冲击韧性和断裂韧性逐渐降低.","authors":[{"authorName":"厉勇","id":"f5941977-744b-4d60-ade0-6564973c8bb3","originalAuthorName":"厉勇"},{"authorName":"","id":"1f9bc804-086f-4eca-bff0-326d143af198","originalAuthorName":"王春旭"},{"authorName":"田志凌","id":"d9395cf5-37e3-4c16-96b7-7c857801e81c","originalAuthorName":"田志凌"},{"authorName":"刘宪民","id":"8c639989-c72b-462b-8438-33cf0062fafa","originalAuthorName":"刘宪民"},{"authorName":"张景海","id":"d2e0c560-2cfe-4a12-94cf-864e303eb976","originalAuthorName":"张景海"}],"doi":"","fpage":"75","id":"27b28f2d-88a4-43cb-8418-36caac4bd9ef","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1a5a4ac5-b676-48e4-a3c6-dd1942811906","keyword":"超高强度钢","originalKeyword":"超高强度钢"},{"id":"788808dd-c210-4599-a127-e149d6a580d0","keyword":"组织","originalKeyword":"组织"},{"id":"900ffcf4-0cf6-4634-a2ae-47b7aa00830b","keyword":"回火","originalKeyword":"回火"},{"id":"3eb3ab57-e682-4e1f-8a89-9a473f39d51f","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt200805016","title":"一种低合金超高强度钢组织与性能的研究","volume":"43","year":"2008"},{"abstractinfo":"在840℃1 h固溶退火+480℃4 h时效处理条件下,不同晶粒度的T250马氏体时效钢力学性能比较试验表明,材料的性能和晶粒尺寸关系并不表现出明显的依存关系.相应的XRD和显微结构比较研究显示,马氏体时效钢的时效行为和晶粒尺寸相关.晶粒细小的马氏体钢时效时形成更多体积分数的逆转奥氏体,以膜状分布在晶界和亚晶界起到软化作用而有利于材料塑韧性的提高;同时产生更为细小弥散的沉淀相起到更为明显的强化作用.这可能是材料的力学性能和晶粒尺寸关系不明显的组织结构原因.","authors":[{"authorName":"胡正飞","id":"33dd0209-aec5-40e8-8f7f-53fce37ca774","originalAuthorName":"胡正飞"},{"authorName":"","id":"65906c99-e8a9-4e98-ac33-1ed624e0f5e1","originalAuthorName":"王春旭"},{"authorName":"莫德峰","id":"4ca518b5-ad44-4782-aa4b-1bb0b19e7f57","originalAuthorName":"莫德峰"},{"authorName":"张斌","id":"a28619d6-5f1c-4794-99f3-f5ad73089396","originalAuthorName":"张斌"}],"doi":"","fpage":"25","id":"2ccf18ae-9484-451d-ab61-932cca73e9b5","issue":"8","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"66af01bf-fbcc-440f-bcd7-af840e1faf07","keyword":"马氏体时效钢","originalKeyword":"马氏体时效钢"},{"id":"b05e6ce2-e3fb-4790-8b59-be6dbc3a09e1","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"1d4dae45-2645-4055-8784-542120e4f957","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"78a10218-cc3c-4f9a-b018-e75cc122e2e0","keyword":"沉淀析出","originalKeyword":"沉淀析出"}],"language":"zh","publisherId":"gtyjxb200908007","title":"T250马氏体时效钢晶粒尺寸对时效析出的影响","volume":"21","year":"2009"},{"abstractinfo":"通过力学性能测试、微观组织和疲劳断口形貌的扫描电镜(SEM)分析等方法系统研究了一种双真空工艺熔炼的高纯度超高强度钢(AF1410)的高周旋转弯曲疲劳破坏特性及非金属夹杂对其疲劳性能的影响.结果表明:AF1410钢经510℃回火5h后,具有优异的综合力学性能,其旋转弯曲疲劳极限强度达到826MPa;通过疲劳断口的SEM观察,试验用AF1410钢的旋转弯曲疲劳裂纹源均起裂于试样表面的加工缺陷,如刀痕、细微缺口等,这些表面缺陷引起的应力集中是导致其疲劳开裂的主要原因;稀土元素La的加入使得高纯AF1410钢弯曲疲劳断口中出现细小圆形的含La非金属夹杂物,但该类稀土夹杂并未成为旋转弯曲疲劳断裂的裂纹源.","authors":[{"authorName":"韩顺","id":"454bff64-0d29-43c0-a62d-cdaeb15e5fbb","originalAuthorName":"韩顺"},{"authorName":"厉勇","id":"990cf0d3-6186-4d30-967b-1408fd66b6e7","originalAuthorName":"厉勇"},{"authorName":"","id":"acf2febc-23ea-427f-a35a-cceab0e13529","originalAuthorName":"王春旭"},{"authorName":"刘宪民","id":"42328a32-f659-4a81-b098-b82de34f9bd5","originalAuthorName":"刘宪民"},{"authorName":"李建新","id":"32eb48f9-f1d3-4cff-a4ba-f7a49d923317","originalAuthorName":"李建新"}],"doi":"","fpage":"82","id":"312cfa0d-d54c-4950-ad8f-8757684269e3","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1d550ec2-b46a-49c7-9893-2035af6e3e44","keyword":"超高强度钢","originalKeyword":"超高强度钢"},{"id":"e5a9254d-7e2d-4249-b971-9cfbdaae89e6","keyword":"AF1410钢","originalKeyword":"AF1410钢"},{"id":"0082d56b-0dec-4ed5-b992-f8f9acf53aee","keyword":"疲劳性能","originalKeyword":"疲劳性能"},{"id":"d6d5e25a-aa3a-47b1-aa71-ddc6c4e8a0bb","keyword":"疲劳裂纹源","originalKeyword":"疲劳裂纹源"}],"language":"zh","publisherId":"gt201303016","title":"AF1410钢的旋转弯曲疲劳破坏行为","volume":"48","year":"2013"},{"abstractinfo":"研究了回火温度和时间对40Cr3MoV钢力学性能的影响.同回火时间相比,回火温度对力学性能的作用要显著得多.在550 ℃以下回火时,力学性能随回火温度的提高变化缓慢;当回火温度高于580 ℃时,随回火温度的提高,强度急剧下降,韧性迅速增加.","authors":[{"authorName":"","id":"286609fd-1e98-4472-a695-06f77bbc18c3","originalAuthorName":"王春旭"},{"authorName":"房昕","id":"7b0be11c-eba4-414f-b0ee-08cba2118049","originalAuthorName":"房昕"},{"authorName":"刘宪民","id":"04518508-b54a-4b91-b73f-e74120950bbf","originalAuthorName":"刘宪民"},{"authorName":"淑琴","id":"8b57da21-77d9-4ad4-b4e6-42830ad87037","originalAuthorName":"王淑琴"}],"doi":"","fpage":"35","id":"32833008-b3e3-4279-956a-79138a7e1a1d","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"b572f509-a68a-4db8-bd16-cb6a74c8515f","keyword":"40Cr3MoV","originalKeyword":"40Cr3MoV"},{"id":"13d6e2e5-a9b2-432f-8f7f-fd000da97ed4","keyword":"回火","originalKeyword":"回火"},{"id":"8a54de4a-0254-4382-b497-fcf8b50a1886","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gtyjxb200203008","title":"回火参数对40Cr3MoV钢性能和组织的影响","volume":"14","year":"2002"},{"abstractinfo":"根据AMS6265K标准对SAE9310钢中C、Ni、Cr、Mo、Mn、Si、B等合金元素成分控制范围的要求,设计了一系列不同成分的试验钢,通过比较试验钢的性能与SAE9310钢标准性能的差别,从而确定了工业试制SAE9310钢的成分控制范围.","authors":[{"authorName":"张熹","id":"3a5c4576-ad97-43f8-b75e-c66c5a133db0","originalAuthorName":"张熹"},{"authorName":"","id":"c38a1fc5-a25b-473e-8a26-6b3bbcf27da2","originalAuthorName":"王春旭"},{"authorName":"刘宪民","id":"e34aa488-a3a4-4fb3-972f-60ed54c7783e","originalAuthorName":"刘宪民"},{"authorName":"史庆南","id":"7c0a0258-4bbe-4636-9b4c-22df0a95baac","originalAuthorName":"史庆南"}],"doi":"","fpage":"58","id":"41eea223-03ea-4f2c-969d-b42fa7761b57","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"9f6cfe84-e345-4dce-a2cc-f9eecdcf657d","keyword":"化学成分波动","originalKeyword":"化学成分波动"},{"id":"2e2fd968-c688-4a8f-81dc-0435d0e9658c","keyword":"SAE9310钢","originalKeyword":"SAE9310钢"},{"id":"c92d6b26-3183-4615-a7cf-743fb4893ad0","keyword":"淬透性","originalKeyword":"淬透性"},{"id":"e04d6af8-fa38-4f38-a56f-87e1c05bb8db","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt200705014","title":"化学成分波动对SAE9310钢淬透性和力学性能的影响","volume":"42","year":"2007"},{"abstractinfo":"研究了采用真空感应+真空自耗重熔工艺冶炼的高纯净二次硬化超高强度AF1410钢的高周疲劳和疲劳裂纹扩展性能.结果表明:高纯净度AF1410钢具有优异的强韧性配合和较高的抗疲劳裂纹扩展能力,应力比尺为0.1时,其光滑(Kt=1)和缺口(Kt=3)疲劳强度分别为1 375MPa和417MPa,且疲劳裂纹源均起始于试样表面缺陷;回火温度对该钢的疲劳裂纹门槛值影响显著.","authors":[{"authorName":"廉学魁","id":"3a4a4d9a-a668-4002-bc29-12e1b8d343f0","originalAuthorName":"廉学魁"},{"authorName":"","id":"d578b596-023e-4b3a-acf7-7228c4f09121","originalAuthorName":"王春旭"},{"authorName":"刘宪民","id":"c6d84c48-7a08-47f8-a189-b9f63e071356","originalAuthorName":"刘宪民"},{"authorName":"厉勇","id":"bc725b03-838d-468d-babc-07b8cdc19fca","originalAuthorName":"厉勇"},{"authorName":"李建新","id":"35db5442-65b8-4432-af72-a6e458edee22","originalAuthorName":"李建新"},{"authorName":"严晓红","id":"622dd02b-502d-43af-9352-bc1b67ec5977","originalAuthorName":"严晓红"}],"doi":"","fpage":"69","id":"4aa2ee68-7dd5-4ce5-88e1-d4dccf61d5f7","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"e7802e70-c2a2-4844-a1a1-fd56550210bb","keyword":"二次硬化","originalKeyword":"二次硬化"},{"id":"56a17167-cdd5-4457-93cd-d6adb394bd99","keyword":"高周疲劳","originalKeyword":"高周疲劳"},{"id":"24c22295-1bdb-4e97-99b6-ab611553980c","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"7fd5af67-0f1d-452a-9409-1274dc6e5b14","keyword":"AF1410钢","originalKeyword":"AF1410钢"}],"language":"zh","publisherId":"gt201102015","title":"二次硬化超高强度钢的高周疲劳性能研究","volume":"46","year":"2011"}],"totalpage":14,"totalrecord":132}