{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在氩气氛围下,以氧气为反应气,用VS机制热蒸发锌粉,在硅衬底上成功地制备出了球状的ZnO纳米线,整个过程没有任何催发剂参与;用扫描电镜、透射电镜和X射线衍射等分别对其形貌、结构及其成份进行了表征;并就影响球状ZnO纳米线的因素进行了分析.","authors":[{"authorName":"林铁军","id":"0e1eaee0-aa77-41d0-96a5-fbe7931b6692","originalAuthorName":"林铁军"},{"authorName":"郭建","id":"2469ab2d-3347-4a62-b5df-1fab072f9cf5","originalAuthorName":"郭建"},{"authorName":"丁书龙","id":"64fac66b-6e9a-48f7-8463-76e8fc933bef","originalAuthorName":"丁书龙"},{"authorName":"宣凯","id":"1961a36d-db0f-478f-ae1b-4fb6bbfe2218","originalAuthorName":"宣凯"},{"authorName":"董敬桃","id":"6aa744c4-c233-4089-ab31-06417281209a","originalAuthorName":"董敬桃"},{"authorName":"李新宇","id":"7a34fa46-89bf-477d-8eae-edc96dd9a0ca","originalAuthorName":"李新宇"}],"doi":"","fpage":"102","id":"f8394bef-50b8-4f7f-85ed-a420b05fccf3","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1a6a1adb-ee25-4da6-9019-660eace72666","keyword":"球状ZnO纳米线","originalKeyword":"球状ZnO纳米线"},{"id":"077d2db3-c222-434f-9571-0b752995a27b","keyword":"表征","originalKeyword":"表征"},{"id":"fa2665fa-3065-40e0-951b-5d53264900fa","keyword":"分析","originalKeyword":"分析"}],"language":"zh","publisherId":"cldb2005z1033","title":"球状ZnO纳米线的制备","volume":"19","year":"2005"},{"abstractinfo":"利用水溶液法制备 ZnO 纳米线,使用真空热蒸发方法用Ag对ZnO 纳米线进行表面修饰。用场发射扫描电子显微镜(FESEM)、X 射线衍射(XRD)仪、吸收谱仪分析它们的表面形貌、物相结构及光学性质,同时分析了其场发射性能。结果表明,随着 Ag 修饰量的增加,ZnO 纳米线表面上的 Ag 纳米粒子分布会由稀疏逐步到致密,最后 Ag 的纳米粒子几乎连在一起。测量吸收谱线发现修饰后的 ZnO 纳米线的吸收能力变强,但存在一个临界值,当修饰量超过临界值后,ZnO 纳米线的光吸收能力会减弱。对修饰后 ZnO纳米线的场发射性能进行初步测试,结果表明适当量的Ag修饰可以有效降低ZnO 纳米线的场发射开启电压。","authors":[{"authorName":"张贺秋","id":"e8237d95-ff6e-45bf-8177-37630351f111","originalAuthorName":"张贺秋"},{"authorName":"刘俊林","id":"38f08e53-8cc6-4b89-91b7-0c453ee2dc54","originalAuthorName":"刘俊林"},{"authorName":"金叶","id":"1910c858-edc2-41e4-ae7e-10d641cc4906","originalAuthorName":"金叶"}],"doi":"10.3969/j.issn.1001-9731.2015.06.007","fpage":"6035","id":"1b41a63b-154b-48f9-9c03-d0291ab40380","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7eff63fb-2efe-453f-a403-b7beb84934db","keyword":"ZnO 纳米线","originalKeyword":"ZnO 纳米线"},{"id":"74d0895f-f209-4dd0-b8df-9893271b93cb","keyword":"Ag纳米粒子","originalKeyword":"Ag纳米粒子"},{"id":"814a40c6-3a2f-45a8-bf3d-746cf4b5aef0","keyword":"修饰","originalKeyword":"修饰"}],"language":"zh","publisherId":"gncl201506007","title":"Ag纳米粒子修饰ZnO 纳米线特性研究?","volume":"","year":"2015"},{"abstractinfo":"利用浸渍法将ZnO纳米线浸渍于AgNO3溶液中制备了Ag 掺杂的ZnO纳米线.借助X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)对纳米线的晶体结构和形貌进行了表征.结果表明纳米线既含面心立方结构的Ag又含有六方纤锌矿结构的ZnO.三维网络结构的ZnO纳米线被一层致密的Ag颗粒包裹并在其表面形成了大量的具有高比表面剂的孔洞结构.将纯的和Ag掺杂的ZnO 纳米线都作为酒敏传感材料,在酒精浓度为0.001%,工作温度为150~400℃的范围内测试了它们的气敏特性,结果显示,Ag掺杂的ZnO纳米线的酒精灵敏度比纯ZnO纳米线提高了14.在工作温度为350℃的条件下测试了它们的响应-恢复时间.气敏元件的酒敏特性主要归结于表面吸附效应.","authors":[{"authorName":"于灵敏","id":"6392f54b-3d04-4350-a9e5-7c29ff5a6b21","originalAuthorName":"于灵敏"},{"authorName":"朱长纯","id":"5e477cfd-dcec-448f-ab3e-c4cff56b8b4e","originalAuthorName":"朱长纯"},{"authorName":"岳苗","id":"3e551ec2-473c-4493-99ef-a0059143aaa0","originalAuthorName":"岳苗"},{"authorName":"范新会","id":"be3bf033-fbcd-4fef-ac9c-fb677b8028c5","originalAuthorName":"范新会"},{"authorName":"祁立军","id":"291218ab-6b57-47fd-bc64-9fbf5cdd8897","originalAuthorName":"祁立军"}],"doi":"","fpage":"867","id":"4f8ef2b8-8c97-4183-a587-39ca003f8850","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c39d1663-5525-4ad4-b3b9-a3c871256cfc","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"987a948a-219e-41a1-a32c-e8ab85c9f81b","keyword":"ZnO纳米线","originalKeyword":"ZnO纳米线"},{"id":"7a36131b-a7fb-499f-9454-391b7e059373","keyword":"气敏传感器","originalKeyword":"气敏传感器"}],"language":"zh","publisherId":"gncl200805049","title":"Ag掺杂ZnO纳米线酒敏性能的研究","volume":"39","year":"2008"},{"abstractinfo":"采用简单水热法制备得到ZnO纳米线,通过控制反应条件调控ZnO纳米线的形貌,得到不同形态的多维ZnO纳米线.利用扫描电镜(SEM)、X射线衍射(XRD)、光致发射光谱(PL)对样品的微观形貌、晶相结构、光学性能进行表征,结果表明:样品的晶型完整,光致发射光谱图显示在384 nm左右出现了紫外区发射峰,而且玉米棒状ZnO纳米线不仅出现了强烈的紫外发射峰,在可见光区域也出现了发射峰.","authors":[{"authorName":"涂盛辉","id":"9f28855b-21c3-4a59-acb1-aec4bf70e215","originalAuthorName":"涂盛辉"},{"authorName":"赖辉芳","id":"c8c15810-ada9-4a7b-8175-0b35cf2eaa73","originalAuthorName":"赖辉芳"},{"authorName":"吴林华","id":"642b56e4-4a00-4d29-8774-3e618ea25e43","originalAuthorName":"吴林华"},{"authorName":"吴佩凡","id":"9d96c8bc-dac0-4cdc-9949-30261d3f68d5","originalAuthorName":"吴佩凡"},{"authorName":"彭海龙","id":"1745b4c0-18e0-465d-bae6-ff423f20666e","originalAuthorName":"彭海龙"},{"authorName":"杜军","id":"cf6b2277-a998-41d5-89a1-fd3830aa8e39","originalAuthorName":"杜军"}],"doi":"","fpage":"1","id":"a04c680e-b661-4889-b740-7030d2c1e4dc","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0ff72fd2-e2db-4c2e-97dc-551bd7a9e005","keyword":"水热法","originalKeyword":"水热法"},{"id":"e0f591e8-c53f-4fd1-aa27-b19365837b1b","keyword":"ZnO纳米线","originalKeyword":"ZnO纳米线"},{"id":"a8fb7bf5-a1a7-4892-ba87-e188fe98679d","keyword":"可控生长","originalKeyword":"可控生长"},{"id":"b1edd5fe-8262-4f03-a7cb-5afc68436373","keyword":"光学性能","originalKeyword":"光学性能"}],"language":"zh","publisherId":"cldb201406001","title":"ZnO纳米线的可控生长及其光学特性","volume":"28","year":"2014"},{"abstractinfo":"采用物理热蒸发ZnS粉的方法,制备出了大规模的线状和棒状ZnO纳米结构.借助扫描电子显微镜、透射电子显微镜、激光拉曼光谱仪以及荧光光谱仪研究了ZnO纳米线的表面形貌、内部结构及其光学性能.结果表明,所得到的ZnO纳米线是六方的单晶结构,而且具有较好的发光性能和良好的结晶性.纳米线长约2~5μm,直径约60nm,其生长机制为气-固(VS)机制.","authors":[{"authorName":"张克良","id":"4a7f6264-7c2a-4ddc-8cc4-3d85908bd19c","originalAuthorName":"张克良"},{"authorName":"范新会","id":"ad964a99-b5d3-40e7-b708-f77f60dcc8be","originalAuthorName":"范新会"},{"authorName":"于灵敏","id":"50f005e2-f6dc-42ac-a60e-cd89417fa526","originalAuthorName":"于灵敏"},{"authorName":"马雪红","id":"a30e2747-f2d1-4da0-af42-6a7f02a71a35","originalAuthorName":"马雪红"},{"authorName":"严文","id":"2726e064-0277-4b22-a216-059717cb1a8f","originalAuthorName":"严文"}],"doi":"10.3969/j.issn.1673-2812.2007.03.022","fpage":"411","id":"4200a6d3-57f6-47e4-a541-c87ce774fa87","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"2bbaec24-87fc-4e23-8cad-e0d6ab7ef8b5","keyword":"热蒸发法","originalKeyword":"热蒸发法"},{"id":"4c6b1376-f080-4d73-9496-499a6fcf1319","keyword":"氧化锌纳米线","originalKeyword":"氧化锌纳米线"},{"id":"3b6136f9-401f-4554-b2c1-7a4476c5756c","keyword":"光学性能","originalKeyword":"光学性能"}],"language":"zh","publisherId":"clkxygc200703022","title":"ZnO纳米线的制备及其光学性能","volume":"25","year":"2007"},{"abstractinfo":"本实验采用溶液法合成球状及棒状ZnO纳米晶.X射线衍射分析(XRD)显示合成的纳米晶为六方纤锌矿结构ZnO.紫外可见光(UV-vis)光谱和透射电镜(TEM)图表明通过改变反应时间可以控制ZnO纳米棒的长度.随着反应时间从90min延长到360min,纳米棒的长度可以从25nm长大到60nm.同时,纳米晶的室温光致发光谱(PL)具有强烈的近带边发射,在LED和LD等光电器件上有一定的应用前景.","authors":[{"authorName":"王庆玲","id":"d20d963e-d57d-4699-b668-30794d0ebe23","originalAuthorName":"王庆玲"},{"authorName":"朱帅","id":"3b15c6ae-98e8-4223-a210-14e77fe92936","originalAuthorName":"朱帅"},{"authorName":"屠瑶","id":"9769f8ac-5653-49c0-bbd7-3fcb2204398c","originalAuthorName":"屠瑶"},{"authorName":"金一政","id":"5283ea7d-4566-48bb-a9f4-f5a1573db389","originalAuthorName":"金一政"},{"authorName":"叶志镇","id":"54ed7da3-121d-446e-9b20-a9321375311d","originalAuthorName":"叶志镇"}],"doi":"","fpage":"494","id":"8597683d-b911-486d-ae92-3a1648a404f8","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"0e6454d0-c0c9-4dc1-b996-cb58884c77f5","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"0fc600d2-9e76-4ffd-8da3-d443d806ae01","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"ab5aabac-025f-44ca-9131-953a893dfc10","keyword":"溶液法","originalKeyword":"溶液法"},{"id":"dd8ff420-fd18-4260-ad72-f46d09619d22","keyword":"量子限域效应","originalKeyword":"量子限域效应"}],"language":"zh","publisherId":"clkxygc201004005","title":"反应时间对球状及棒状ZnO纳米晶的影响","volume":"28","year":"2010"},{"abstractinfo":"利用物理热蒸发法通过控制载气流量和氧气流量制备出具有倒V字形尖端的ZnO纳米线,利用荧光光谱仪、拉曼光谱仪对ZnO纳米线的光致发光性能和拉曼散射性能进行了测试.结果表明:与其它形状的ZnO纳米线的光致发光性能不同,该ZnO纳米线在423~458 nm区域有二个宽频带强蓝光发射,在527 nm处出现一个非常弱的绿光发射,没有发现紫外光发射;相对于ZnO纳米粉,ZnO纳米线的拉曼光谱峰发生约3 cm-1红移,主要来源于光子限制效应.","authors":[{"authorName":"于灵敏","id":"832f1073-4793-4f2f-bd80-8b089adf471e","originalAuthorName":"于灵敏"},{"authorName":"张克良","id":"352cd867-4b60-406d-9728-d19fafa98f3c","originalAuthorName":"张克良"},{"authorName":"马雪红","id":"ea221e67-89cb-4cfa-95f4-19b6f5d1accf","originalAuthorName":"马雪红"},{"authorName":"范新会","id":"5c6290c3-2978-4351-818d-3d7a407ffd3d","originalAuthorName":"范新会"},{"authorName":"","id":"1c1c0c73-9320-4dfa-9674-b5b92824d937","originalAuthorName":""},{"authorName":"严文","id":"7d07eabc-62da-482b-94c5-a6179d43a277","originalAuthorName":"严文"}],"doi":"10.3969/j.issn.1000-3738.2007.09.019","fpage":"64","id":"bdb42b7c-3be1-490c-ab26-61699369fc74","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"1dc0b74f-9294-46bf-899e-3940a6132270","keyword":"ZnO纳米线","originalKeyword":"ZnO纳米线"},{"id":"dea29056-aa80-42d8-adbe-6bc78f9fd7df","keyword":"光致发光谱","originalKeyword":"光致发光谱"},{"id":"9635039a-26d3-4d88-bf5a-8ac67661accf","keyword":"拉曼光谱","originalKeyword":"拉曼光谱"}],"language":"zh","publisherId":"jxgccl200709019","title":"ZnO纳米线的光致发光性及拉曼散射性能","volume":"31","year":"2007"},{"abstractinfo":"以多孔氧化铝膜为模板,电化学沉积出Zn纳米线,再通过高温氧化得到ZnO纳米线阵列.通过改变制备多孔氧化铝模板的工艺参数来改变模板纳米孔径,进而改变ZnO纳米线的直径,得到不同形态的ZnO纳米线阵列.应用X射线衍射仪、透射电子显微镜测试技术表征了ZnO纳米线的结构与形貌.结果发现,X射线衍射时会出现随ZnO纳米线直径增大衍射峰增多和增强的现象.采用荧光光谱仪测试样品的光致发光性能,通过Gaussian原理对谱峰的拟合分析了ZnO纳米线形态对其光致发光光谱的影响.结果表明,随着纳米线直径从30 nm至60 nm依次增大.其结晶性和化学计量比逐渐变好.近紫外区和蓝光区的发射峰随着纳米线直径的增大而蓝移,而纳米线直径为60 nm的样品则出现随直径增大而红移的现象.结果可见,直径在55~60 nm间的某点将是ZnO纳米线的结构和光致发光性能变化的临界点.","authors":[{"authorName":"黄新民","id":"51131a28-dd47-45fb-a5e0-741d6f144a3c","originalAuthorName":"黄新民"},{"authorName":"任鑫","id":"7d3eb4c4-462c-4aac-9b4f-4d41888872fb","originalAuthorName":"任鑫"},{"authorName":"朱泓","id":"8311633c-77ae-4dd8-885a-5db50d01bd03","originalAuthorName":"朱泓"}],"doi":"10.3969/j.issn.1000-0518.2007.03.025","fpage":"353","id":"8a3824ea-3009-4cc0-9c9f-77694ad59e83","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"d16014e8-c915-4f2d-8b0f-90874ae005b6","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"f813899c-5536-4e5a-b19c-cad9b04e733f","keyword":"ZnO纳米线","originalKeyword":"ZnO纳米线"},{"id":"c9469740-0754-4d22-a48c-9961f7a72f76","keyword":"光致发光","originalKeyword":"光致发光"},{"id":"7055aa80-5f44-49b2-8bab-1c028bbc5e8b","keyword":"多孔氧化铝膜","originalKeyword":"多孔氧化铝膜"}],"language":"zh","publisherId":"yyhx200703025","title":"ZnO纳米线形态对其光致发光性能的影响","volume":"24","year":"2007"},{"abstractinfo":"以Zn粉为材料,采用CVD法在宽温区内可控生长ZnO纳米线.利用SEM对产物进行了微观分析,考察了反应温度与升温时间对ZnO纳米线形貌的影响.用ZnO纳米线制成光电导型紫外光探测器,并测试了该器件的性能,考察了所得ZnO纳米线的光电特性.研究工作表明:用CVD法制备ZnO纳米线时的反应温度不限于某一个特定值,而是常压下在419.5℃以上的温区内均可进行,该宽温区ZnO纳米线CVD合成法的关键在于优化和匹配生长温度与加热时间两个参数.对紫外光探测器的性能测试结果表明,ZnO纳米线具有良好的紫外光电响应特性.","authors":[{"authorName":"马可","id":"ae5c7fbd-1c1d-4e55-a325-884d600591bc","originalAuthorName":"马可"},{"authorName":"贺永宁","id":"7f7a8621-bb3b-4127-8730-0ba6379793ea","originalAuthorName":"贺永宁"},{"authorName":"张松昌","id":"ebd2fe89-4567-4c64-9e30-63d24fd6f216","originalAuthorName":"张松昌"},{"authorName":"刘卫华","id":"fc5284d0-dcb4-48d5-bfad-f8941f5c93e1","originalAuthorName":"刘卫华"}],"doi":"","fpage":"863","id":"6ece767f-b237-4cb7-afca-ae2a2e26ec14","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e4d10ae8-13a1-45e1-a7a9-561e21a67417","keyword":"ZnO纳米线","originalKeyword":"ZnO纳米线"},{"id":"18b03384-fa2d-4057-b7db-91d125f78e72","keyword":"CVD生长法","originalKeyword":"CVD生长法"},{"id":"f2660614-7ec4-4e6d-8d72-36257cc86ff3","keyword":"宽温区生长","originalKeyword":"宽温区生长"},{"id":"38206d98-cc51-4e89-a969-f0205554003a","keyword":"光电导型紫外线探测器","originalKeyword":"光电导型紫外线探测器"}],"language":"zh","publisherId":"rgjtxb98201204008","title":"宽温区内ZnO纳米线的CVD可控生长方法研究","volume":"41","year":"2012"},{"abstractinfo":"在十六烷基三甲基溴化铵表面活性剂辅助下,通过水热合成法制备了Co2+掺杂ZnO纳米线.纳米线的直径为100~160nm,长度约为10μm.纳米线沿(001)方向生长.Co2+掺杂ZnO纳米线紫外-可见(UV-vis)吸收光谱曲线,显示掺杂的ZnO纳米线在200~300nm波段之间都有很强的紫外吸收,在波长360~370nm处显示很好的激子吸收,与体相的激子吸收峰(373nm)相比产生了蓝移.纳米线分别在385、409、433、462和495nm波段表现出发光特性,简略的讨论了其发光机制.","authors":[{"authorName":"曹志峰","id":"acf16a95-248e-41a5-85b4-739d9d008c01","originalAuthorName":"曹志峰"},{"authorName":"张娟","id":"44903f8f-20eb-40d3-9be1-cef4b962f3d5","originalAuthorName":"张娟"},{"authorName":"孙元平","id":"d62eea76-8bba-4d90-bbeb-c59dcf3574fa","originalAuthorName":"孙元平"},{"authorName":"李剑平","id":"cb0ebbd8-4d71-497b-a653-ea6065ff4a0c","originalAuthorName":"李剑平"},{"authorName":"徐宝龙","id":"1ede972b-169f-491c-b0d5-f9c41b676130","originalAuthorName":"徐宝龙"}],"doi":"","fpage":"305","id":"4f60044e-e466-4b41-b33c-de00f51756a6","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a6b3bc14-e9e5-4eb0-be5d-2948f725edd6","keyword":"氧化锌","originalKeyword":"氧化锌"},{"id":"7176a780-ccdb-4c74-ae97-452f96fde5c5","keyword":"Co2+掺杂","originalKeyword":"Co2+掺杂"},{"id":"24eea1b6-b57a-4c67-a6f2-40518bff301a","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"68cae879-1c1c-420f-8466-805d594abcd6","keyword":"光致发光","originalKeyword":"光致发光"}],"language":"zh","publisherId":"gncl200802037","title":"Co2+掺杂ZnO纳米线的制备与光学特性的研究","volume":"39","year":"2008"}],"totalpage":2645,"totalrecord":26448}