{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"运用ANSYS12.0软件对W/Cu梯度材料进行热应力模拟分析,并对结构进行优化设计.结果表明,随着成分分布指数(p)的增加,最大热应力先减小后增大;在p=1.3,热流密度为30MW/m2时,最大热应力值最小为180MPa,与非梯度材料相比最大等效热应力降低79%;最优化的梯度层厚度大于3mm,梯度层数4~6层,钨板的厚度1~3 mm.","authors":[{"authorName":"宋月鹏","id":"a81221e1-4fe7-4fd5-b559-42c1332402f5","originalAuthorName":"宋月鹏"},{"authorName":"孙祥鸣","id":"f44672c3-d33f-4461-9f63-6491dd9eeacf","originalAuthorName":"孙祥鸣"},{"authorName":"李江涛","id":"b776ab5b-6b22-4123-8464-1ad4f5ef4590","originalAuthorName":"李江涛"},{"authorName":"李倩","id":"b07347d4-392f-462f-804d-b3b51dbcd21c","originalAuthorName":"李倩"},{"authorName":"陈义祥","id":"f7afa28f-cf85-4cdd-b917-1a48f3b3b5b5","originalAuthorName":"陈义祥"},{"authorName":"郭世斌","id":"913ecdaf-cb5a-4bd2-9a93-19f4d0caa081","originalAuthorName":"郭世斌"},{"authorName":"高东升","id":"2c382f21-4bc5-40db-9d8d-f3e5edd2739e","originalAuthorName":"高东升"}],"doi":"","fpage":"603","id":"a2e08d84-faa2-458f-b506-c155d4585a6a","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"eee6c010-6c0f-44fc-9409-68344a52bbcf","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"1b72fc80-6ec7-4947-addc-53aa320e5362","keyword":"W/Cu梯度材料","originalKeyword":"W/Cu梯度材料"},{"id":"cfa92f53-24a9-4592-a815-03bb22e1ec31","keyword":"成分分布指数","originalKeyword":"成分分布指数"},{"id":"6c5d2777-fe91-45c4-ac19-58170536b9b7","keyword":"热应力","originalKeyword":"热应力"}],"language":"zh","publisherId":"xyjsclygc201503017","title":"W/Cu梯度材料热应力分析及结构优化设计","volume":"44","year":"2015"},{"abstractinfo":"通过在板坯和热卷上取样,分析超低碳无取向电工钢成分分布,发现开浇2m长度的板坯成分异常,距板坯表面1/4处元素含量偏析最小,提出了浇注中成分控制措施.","authors":[{"authorName":"董金刚","id":"e139f38c-5346-4414-b08d-a39e8ad795df","originalAuthorName":"董金刚"},{"authorName":"孙焕德","id":"91140016-957a-43cb-a870-de4a69805784","originalAuthorName":"孙焕德"},{"authorName":"曹伟","id":"22c05d2a-9149-42d8-9b66-743e0a24f930","originalAuthorName":"曹伟"}],"doi":"10.3969/j.issn.1005-4006.2001.05.011","fpage":"28","id":"87784c81-666e-4046-a40b-1e49231e2f32","issue":"5","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"1140dd4b-6ac9-4267-a489-e8286f549b05","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"lz200105011","title":"超低碳无取向电工钢板坯成分分布","volume":"","year":"2001"},{"abstractinfo":"使用添加MoS2和少量Fe粉改性处理的聚四氟乙烯,在常用的Al-Si-Cu系铝合金表面经硬质阳极氧化后,采用热浸法制备改性含氟的自润滑层.分析了涂层的形貌和填料成分分布以及对性能的影响.","authors":[],"doi":"","fpage":"297","id":"84041879-4134-4525-bb4c-2b3b6db31855","issue":"z3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6085bfe0-147a-4e34-9140-225c8ce417e8","keyword":"聚四氟乙烯","originalKeyword":"聚四氟乙烯"},{"id":"45a770f9-66ec-4e1f-b7c5-05cd05118c98","keyword":"改性层","originalKeyword":"改性层"},{"id":"f8a340a0-72c7-4677-9d19-16727a3fb308","keyword":"组织","originalKeyword":"组织"},{"id":"b013691b-dfa4-4f54-a892-a6fe5aec2041","keyword":"形貌","originalKeyword":"形貌"}],"language":"zh","publisherId":"cldb2004z3091","title":"铝合金表面含氟自润滑层成分分布与组织形貌","volume":"18","year":"2004"},{"abstractinfo":"采用真空非自耗电弧熔炼后再真空自耗电弧熔炼的方法制备了Nb-Ti-Si-Cr-Al-Hf-Mo-B-Y超高温合金的母合金锭,分析了合金锭不同位置的组织形貌、相组成和成分分布特点.结果表明:母合金锭主要由Nbss, (Nb,X)5Si3和(Nb,X)3Si三相组成.母合金锭组织主要由初生Nbss枝晶,花瓣状Nbss+(Nb,X)5Si3共晶和块状(Nb,X)3Si组成;但在母合金锭底部和顶部的中心部位组织却由分布均匀的Nbss+(Nb,X)5Si3共晶组成,没有出现初生树枝状Nbss和块状(Nb,X)3Si.母合金锭中的成分分布特点为Si由锭边缘向中央逐渐升高,Ti由边缘向中央逐渐递减.","authors":[{"authorName":"何永胜","id":"70491863-8c62-4f30-a798-b556ce3f43d5","originalAuthorName":"何永胜"},{"authorName":"郭喜平","id":"8e51214e-f041-4dc9-8eb3-3693b418d727","originalAuthorName":"郭喜平"},{"authorName":"孙志平","id":"efcb1d80-8643-43d4-b969-ad5ca0581f3f","originalAuthorName":"孙志平"},{"authorName":"巨小创","id":"1a28001d-9509-4351-b064-8d4333432e50","originalAuthorName":"巨小创"}],"doi":"10.3969/j.issn.1001-4381.2009.01.002","fpage":"4","id":"f99208a0-426b-460b-8aca-1f64e31bb69a","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"d1359b75-a58b-4d10-9283-0b7a5affe7c2","keyword":"铌硅化物基超高温合金","originalKeyword":"铌硅化物基超高温合金"},{"id":"a6938879-6ff5-4508-a3f3-d8d5e400a2c1","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"318e0ea7-c1c5-4f2d-8cff-c4d794fcb158","keyword":"相组成","originalKeyword":"相组成"},{"id":"20d54c89-6942-46db-8a5b-84ef3e0dbbb0","keyword":"电弧熔炼","originalKeyword":"电弧熔炼"}],"language":"zh","publisherId":"clgc200901002","title":"铌硅化物基超高温合金电弧熔炼态组织和成分分布","volume":"","year":"2009"},{"abstractinfo":"利用数值模拟方法研究了在冲击载荷作用下组份成分对称分布的功能梯度板的动态响应.梯度板材料为陶瓷颗粒增强的铝基复合材料(MMC).增强相体积分数随厚度服从指数定律连续分布,在对称分布条件下增强相体积分数分别在梯度板的前后表面达到最大值.结果显示,在这种功能梯度装甲板中,应力波的传播非常复杂,弹性和粘塑性波耦合在一起,反射拉伸波和卸载波的大小依赖于组份成分沿厚度的分布;等效塑性应变的幅值、动能、弹性应变能及耗散能随时间的变化规律与功能梯度材料组份成分沿厚度的变化密切相关.这些因素对强冲击载荷作用下功能梯度板的优化设计非常重要.","authors":[{"authorName":"李玉龙","id":"bca8fd9d-2beb-4f7f-af4b-8ffbd8c848cd","originalAuthorName":"李玉龙"},{"authorName":"周宏霞","id":"e82a4827-537d-4439-8fe1-12561b7b6121","originalAuthorName":"周宏霞"},{"authorName":"徐绯","id":"983766b7-5e59-431a-89b3-0def85076126","originalAuthorName":"徐绯"},{"authorName":"郭伟国","id":"44fbe387-21f7-44cf-9c3e-7560065d8819","originalAuthorName":"郭伟国"}],"doi":"10.3321/j.issn:1000-3851.2005.04.011","fpage":"58","id":"1f97b452-c124-4713-88f9-e3c2911a2ad0","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8d813f52-c0e3-43fa-b735-e0967edea59a","keyword":"功能梯度板","originalKeyword":"功能梯度板"},{"id":"f6a2ef19-cf15-4829-a021-42b1fa1c397d","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"},{"id":"218a1bba-c888-4098-8162-648ff3d82034","keyword":"颗粒增强","originalKeyword":"颗粒增强"},{"id":"b5a4cff6-086f-4c82-8a86-7eef72d5e68b","keyword":"冲击载荷","originalKeyword":"冲击载荷"},{"id":"50473394-2b23-4674-826e-944c49c8f677","keyword":"动态响应","originalKeyword":"动态响应"}],"language":"zh","publisherId":"fhclxb200504011","title":"组份成分分布规律对功能梯度防护装甲动态响应的影响","volume":"22","year":"2005"},{"abstractinfo":"研究了不同温度扩散处理条件下Au/AgCu/Cu-Ni-Zn3层复合薄带材在结合面区域的成分分布.结果表明:在AgCu/Cu-Ni-Zn结合面区域,扩散温度升高可促使Ni,Zn的迁移,但对Cu的迁移无明显影响;在Au/AgCu结合面区域,较高的扩散温度可使Au,Ag及Cu原子通过原始结合面迅速迁移而互溶,导致纯Au表层演变为AgAuCu合金层.","authors":[{"authorName":"孟亮","id":"2f8a50b1-87e4-4c10-b861-230105eda08f","originalAuthorName":"孟亮"},{"authorName":"张雷","id":"f9d11f97-422b-448a-92c8-166b2a63c0cd","originalAuthorName":"张雷"},{"authorName":"周世平","id":"09cea24d-9346-4349-b0f0-21b6ed620d04","originalAuthorName":"周世平"},{"authorName":"杨富陶","id":"ab04e403-1f9d-4e70-9edf-224454b00388","originalAuthorName":"杨富陶"},{"authorName":"沈其洁","id":"376e6b31-d335-4e22-8b71-468ee90d29c9","originalAuthorName":"沈其洁"}],"doi":"","fpage":"375","id":"b546544c-478d-4b51-9793-4b15ecba3d68","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3e13705a-30a0-47d8-8d07-4dd2ff21e7cf","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"abdbff0f-af3d-4b13-9d6c-207c329b27f8","keyword":"扩散","originalKeyword":"扩散"},{"id":"81a1003f-7f2e-4e6c-8815-a3c5f189543d","keyword":"结合面","originalKeyword":"结合面"},{"id":"5a3fb793-cfe8-4609-8a8e-99ef75fc1760","keyword":"成分分布","originalKeyword":"成分分布"}],"language":"zh","publisherId":"xyjsclygc200205014","title":"扩散退火对Au/AgCu/Cu-Ni-Zn结合面成分分布的影响","volume":"31","year":"2002"},{"abstractinfo":"TiAl类金属间化合物Ti-47.5Al-2.5V-1.0Cr为有潜力的轻量化高温合金,用于精密铸造高温部件.成分配比和铸造工艺影响该钛合金铸件质量和使用性能,有必要研究其三维(3D)空间成分分布.实验利用激光诱导击穿光谱(LIBS)在设定的多个位置进行深度激发,获得每个位置激发深度对应的测量数据.将对应位移系统3D坐标的全部测量数据组合成矩阵,将三维位移系统的3D坐标转换为样品实际测绘的3D坐标,抽取一定比例的多层分布面数据、经Matlab模拟得到3D-成分分布全貌,建立了成分的3D空间分布方法.对Ti-47.5Al-2.5V-1.0Cr涡流器进行3D近表面分析,获得了不同以往的成分分布形态认知.C、Ca元素的层状正偏析平行于样品表面,Cr、V元素的层状负偏析斜交于表面.剔除40 μm表层后计算得到的该钛合金的Al、Ti原子比中位值为1.02,接近配料比值1.03.","authors":[{"authorName":"刘正","id":"0d64d197-f0c1-4d0b-97e8-2a57e7a9e2f2","originalAuthorName":"刘正"},{"authorName":"贾云海","id":"994d6b77-d286-4960-992a-7e7a207d9207","originalAuthorName":"贾云海"},{"authorName":"李胜","id":"0122ffef-367f-432b-add1-b7544c02ab06","originalAuthorName":"李胜"}],"doi":"10.13228/j.boyuan.issn1000-7571.009941","fpage":"1","id":"08db13f6-e8d1-4677-84aa-00b895bedb07","issue":"6","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"6248cb88-80c2-44cf-8077-03b205e230e1","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"5f913255-3d08-43e8-8bad-c14f8782ac9a","keyword":"铸件","originalKeyword":"铸件"},{"id":"d1d63ca3-641f-4ce2-81ff-daf225653da6","keyword":"三维分布","originalKeyword":"三维分布"},{"id":"dfe056f6-2f15-4fb8-bd1a-47b85a8839b0","keyword":"激光诱导击穿光谱","originalKeyword":"激光诱导击穿光谱"},{"id":"9a65e34b-182e-4433-804c-0ac8dd17f913","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"yjfx201606001","title":"激光诱导击穿光谱分析钛合金铸件三维成分分布","volume":"36","year":"2016"},{"abstractinfo":"研究了电渣熔铸对42CrMo 钢元素的烧损规律,测定了42CrMo电渣熔铸件上不同部位元素的分布,用XRD测定了枝晶内和枝晶间元素的微观分布;用电解法和萃取法测定了电渣熔铸前后的夹杂物的含量,并对夹杂物特征进行了比较.结果表明:电渣熔铸件元素分布均匀,硫、磷等有害元素含量低.通过电渣熔铸,夹杂物含量大幅度降低,硫化物由0.014%下降到0.006%,氧化物由0.006 5%下降到0.004 4%~0.004 7%,夹杂物总量由0.020 5%下降到0.010 5%.","authors":[{"authorName":"王泽华","id":"ad9d44f7-4215-46ee-abde-256e7d649919","originalAuthorName":"王泽华"},{"authorName":"鲍国栋","id":"9b457bd4-340e-45c7-92a1-104b718d5c83","originalAuthorName":"鲍国栋"},{"authorName":"张俊新","id":"1fbabfa8-4f65-4b42-ad52-e7bf08be1710","originalAuthorName":"张俊新"},{"authorName":"徐嘉","id":"4964e909-b601-4ade-a21f-5530be515a12","originalAuthorName":"徐嘉"}],"doi":"10.3969/j.issn.1000-3738.2004.05.006","fpage":"17","id":"272320af-db78-48cd-ae9e-10d37ef5e5ba","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"629cd9c4-29a6-43b5-baea-3c194bed3d6b","keyword":"42CrMo钢","originalKeyword":"42CrMo钢"},{"id":"5ea7584d-33bd-41cc-8253-79335b03100a","keyword":"电渣熔铸","originalKeyword":"电渣熔铸"},{"id":"37ddd3a1-2f4b-48ef-913a-6a852bede717","keyword":"化学成分","originalKeyword":"化学成分"},{"id":"4cfdb739-518d-447b-affa-9df40ba073e0","keyword":"夹杂物","originalKeyword":"夹杂物"}],"language":"zh","publisherId":"jxgccl200405006","title":"42CrMo钢电渣熔铸件成分分布的研究","volume":"28","year":"2004"},{"abstractinfo":"利用电子探针波谱仪(WDS)对保偏光纤的横截面进行了成分分析,得到了径向掺杂元素的分布以及应力区和芯区的实际几何形状.实验分析表明保偏光纤截面应力掺杂区成分分布比较明显,从背散射像可以看出,中心白色区域为光纤的Ge掺杂的芯部,两侧黑色区域为B掺杂的应力区.扫描电镜能谱分析得到光纤截面能谱图,从而得到光纤内的杂质种类,这也是和工艺过程中所掺杂的元素相对应的.同时,在测得的应力元形状的基础上,利用微元算法模拟计算双折射与应力元形状及掺杂元素浓度的关系,为新型应力元结构光纤的设计提供依据.","authors":[{"authorName":"李美成","id":"0b042d61-11c9-436c-974e-951cacb84f07","originalAuthorName":"李美成"},{"authorName":"刘礼华","id":"451041f1-02ac-43bd-bd6a-f3963f0c32f9","originalAuthorName":"刘礼华"},{"authorName":"李祥鹏","id":"0689f3cf-2016-46df-9186-11b1a7d44393","originalAuthorName":"李祥鹏"},{"authorName":"萧天鹏","id":"50bd933d-b422-4db0-9ed7-6f163b9ff44b","originalAuthorName":"萧天鹏"},{"authorName":"赵连城","id":"a4d34b4a-247d-4e9a-b27d-76995a7203fb","originalAuthorName":"赵连城"}],"doi":"","fpage":"358","id":"f4dd6bc6-b9ca-4a5b-8758-79d1b7e6425e","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"933c6f02-da51-4bbe-81a6-97b3d7e10a56","keyword":"保偏光纤","originalKeyword":"保偏光纤"},{"id":"c74915e8-9f10-4e42-bafd-885a3b4abe2a","keyword":"应力元","originalKeyword":"应力元"},{"id":"ec9d1b2e-82de-47a9-bd09-c08276dfa526","keyword":"掺杂浓度","originalKeyword":"掺杂浓度"},{"id":"5e4f60a5-d87c-4346-9c01-53ed864e1866","keyword":"双折射","originalKeyword":"双折射"}],"language":"zh","publisherId":"gncl2004z1087","title":"保偏光纤应力元成分分布的电子探针分析及双折射的模拟计算","volume":"35","year":"2004"},{"abstractinfo":"在ZrO2-NiCoCrAlY梯度涂层中,由基体到涂层表面,ZrO2的含量逐渐增多,NiCoCrAlY的含量逐渐减少,形成一种无宏观结合界面的成分连续变化的组织结构.随ZrO2组元含量的升高,ZrO2-NiCoCrAlY复合涂层的密度基本呈线性降低;涂层硬度则先降低后升高,含60 vol%ZrO2的复合涂层具有最低的硬度值;富含NiCoCrAlY组元的复合涂层的孔隙率略低.与双层涂层相比,成分梯度化的分布使梯度涂层的内聚强度和涂层与基体的结合强度都得到了明显地提高;涂层与基体的结合界面是梯度涂层-基体体系中的最薄弱之处.","authors":[{"authorName":"向兴华","id":"a5898c19-b908-4944-936f-3d7ee2ee6e2d","originalAuthorName":"向兴华"},{"authorName":"陈康年","id":"f0b14b19-f75d-4d1b-bfe0-0902a6582f39","originalAuthorName":"陈康年"},{"authorName":"刘正义","id":"ad76cdfd-e2a1-4c21-b68b-5604386c8a22","originalAuthorName":"刘正义"},{"authorName":"李尚周","id":"9059608d-c269-425e-9fc4-48cf36c0c2da","originalAuthorName":"李尚周"},{"authorName":"尹钟大","id":"123d4212-2023-4277-8f0b-1e016efd2522","originalAuthorName":"尹钟大"},{"authorName":"朱景川","id":"76315f25-c129-4cb1-9a52-70464db14a09","originalAuthorName":"朱景川"},{"authorName":"全成军","id":"ecd93af5-1c37-4fa9-9c31-9d5d3be94a54","originalAuthorName":"全成军"}],"doi":"10.3321/j.issn:1000-3851.2000.01.020","fpage":"89","id":"41b99d7e-6aac-4b82-b90b-f73b630a96af","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"17540e06-791b-4bba-a0be-6c320e6ab307","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"8fbcbb1a-6086-45f4-a917-99b1d39a1ea4","keyword":"梯度涂层","originalKeyword":"梯度涂层"},{"id":"5bf5e7f3-d60b-4e61-81c7-e29ed7398d16","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"6e36db60-6cbd-4f1f-91f3-f8a7232da1db","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"fhclxb200001020","title":"等离子喷涂ZrO2-NiCoCrAlY梯度涂层的成分分布与力学性能","volume":"17","year":"2000"}],"totalpage":3636,"totalrecord":36354}