{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了提高工件防腐能力2种主要工艺:镍封和微裂纹镍工艺.实验结果证明,这2种工艺都比双镍层有更好的防腐性能.分析了镍封和微裂纹镍的防腐机理,区别在于腐蚀开始后电子的流向:镍封/光镍层,电子从光镍层流向镍封层;微裂纹镍/光镍层,电子从微裂纹镍层流向光镍层.综合分析得出,镍封比微裂纹镍有更好的防腐能力.","authors":[{"authorName":"吴伟杰","id":"ca3b6595-1c07-4426-9d21-aaae124d09e6","originalAuthorName":"吴伟杰"},{"authorName":"汤勇军","id":"7f187b74-2081-4366-b14f-8d4aaabaf3c1","originalAuthorName":"汤勇军"}],"doi":"10.3969/j.issn.1004-227X.2006.03.001","fpage":"1","id":"9031e607-9b22-4d45-b368-3c8440f5d802","issue":"3","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"3a2ea12e-aff5-4c8a-807c-0099708c6dbd","keyword":"镍封","originalKeyword":"镍封"},{"id":"5defb090-db5e-48b2-95ce-7408e4aeae78","keyword":"微裂纹镍","originalKeyword":"微裂纹镍"},{"id":"1c5f7d41-7362-464e-a464-0ae836bb8513","keyword":"防腐","originalKeyword":"防腐"}],"language":"zh","publisherId":"ddyts200603001","title":"微裂纹镍和镍封防腐能力的比较","volume":"25","year":"2006"},{"abstractinfo":"在普通光亮镍镀液中直接滴加钡配合物溶液(柠檬酸钠+氯化钡)制备含有硫酸钡微粒的复合镀镍(镍封)液.探讨了钡配合物溶液滴加量、滴加速率、温度和搅拌强度对后续微孔铬镀层微孔密度的影响.配制镍封液的较优工艺条件为:滴加量10 mL/L,滴加速率30 s/mL,搅拌强度4级,温度40℃.该镍封工艺简单可行,可以获得BaSO4粒径基本一致、均匀镶嵌的Ni-BaSO4复合镀层,最终制得微孔密度高、耐蚀性好的微孔铬镀层.为防止该工艺所得镍封液在存放过程中微粒间发生团聚而影响铬镀层的微孔密度和耐腐蚀性,还需要寻找合适的分散剂.","authors":[{"authorName":"何湘柱","id":"e634980f-dd07-4461-a107-aec13e37c6fc","originalAuthorName":"何湘柱"},{"authorName":"秦华","id":"e654595a-e664-43b8-acef-80512a58fa48","originalAuthorName":"秦华"},{"authorName":"谢金平","id":"3212af4c-53d1-4fa5-bb8d-a5862a5068c8","originalAuthorName":"谢金平"},{"authorName":"范小玲","id":"ae9c0b2e-7d2a-48ff-8ccd-f02f9faa3603","originalAuthorName":"范小玲"}],"doi":"","fpage":"978","id":"9b0307eb-4490-4f42-9650-a9e96c51a9a3","issue":"17","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"805df555-5c97-45fa-87c5-f6f347f4d749","keyword":"镍封","originalKeyword":"镍封"},{"id":"3ee42c11-3e03-4098-96f7-09cc0ebb3719","keyword":"硫酸钡","originalKeyword":"硫酸钡"},{"id":"ef40ff73-eae0-4feb-ad56-e8085f3efc6b","keyword":"复合镀","originalKeyword":"复合镀"},{"id":"7560104e-87e2-4276-9370-7d7641493deb","keyword":"微孔密度","originalKeyword":"微孔密度"},{"id":"99e24058-149d-4b0b-b9e2-d035b530c71c","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddyts201517006","title":"镍封新工艺——复合电镀镍-硫酸钡","volume":"34","year":"2015"},{"abstractinfo":"对比研究了分别以自制N001和市售DN-618作添加剂时,温度、pH、电流密度等镍封工艺参数对铬镀层微孔密度的影响,并研究了镍封添加剂种类对铬镀层耐蚀性的影响.以自制N001作添加剂时,镍封的最佳工艺参数为:镍封液温度50~60℃,pH=3.8 ~ 4.2,电流密度4A/dm2,铬镀层厚度0.3 ~ 0.5 μm.在此条件下所得铬镀层的微孔密度约为1.1×105个/cm2.保护等级为9级时,铬镀层耐铜加速乙酸盐雾腐蚀的时间达48 h.","authors":[{"authorName":"韩生","id":"89c18591-f9eb-4bf1-a995-7c919e53663e","originalAuthorName":"韩生"},{"authorName":"缪叔婷","id":"bde50115-78a7-4f7e-a448-c0273f1f3413","originalAuthorName":"缪叔婷"},{"authorName":"郝利峰","id":"0b183f36-ac0f-4c7e-8159-6067a07cbdd7","originalAuthorName":"郝利峰"}],"doi":"","fpage":"13","id":"45effa14-50dd-43e2-a7dd-26f0ba137f26","issue":"4","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"a2d186a4-6266-46ab-b2eb-59b86be6e6aa","keyword":"镍封","originalKeyword":"镍封"},{"id":"1f38bb31-5fdb-4bd0-af85-ea04a885f3fe","keyword":"微孔密度","originalKeyword":"微孔密度"},{"id":"a9981b40-b2fc-4bb3-863e-4d0589586c3b","keyword":"铬镀层","originalKeyword":"铬镀层"},{"id":"c4cf6aef-e910-4634-9809-1b2cbf593ca2","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddyts201204004","title":"镍封工艺参数对铬镀层微孔密度及耐蚀性的影响","volume":"31","year":"2012"},{"abstractinfo":"介绍了新型纳滤膜处理高浓度电镀工业含镍废水的应用研究.在操作压力2.2 MPa,进料流量1 800 L/h的条件下,纳滤过程可将镍封漂洗水浓缩至20 000 mg/L以上,平均膜通量大于40 L/(h·m2);Ni2+、有机添加剂及硼酸的平均截留率分别大于99%、90%和35%,微孔剂则被完全截留.60 d工业运行结果表明,浓缩液和透过液分别回用于光亮镍电镀槽及镍封漂洗槽,满足电镀生产要求;单批次操作后用清水循环5 min以及运行5 d后用2%柠檬酸溶液循环30 min,能够有效解决膜面污染问题,达到工业化生产的要求,具有显著的社会效益与经济效应.","authors":[{"authorName":"常江","id":"70291d33-fe15-4114-87ec-d1e19b3bdcd0","originalAuthorName":"常江"},{"authorName":"孙余凭","id":"3e164e0a-0bca-40c4-bc6f-c27bb9661148","originalAuthorName":"孙余凭"}],"doi":"","fpage":"36","id":"2a4585d6-a364-49b7-bac2-ab52a7a972c7","issue":"4","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"3fe7e356-d9a5-43af-a146-6c6b76d1e0bc","keyword":"电镀","originalKeyword":"电镀"},{"id":"7eaea394-2879-438d-95d1-215911b6191b","keyword":"镍封","originalKeyword":"镍封"},{"id":"e47a3fdf-8202-4cb7-a827-a8bfc0376fd4","keyword":"漂洗水","originalKeyword":"漂洗水"},{"id":"ae1a2b86-6044-4f54-bb23-4f6f5b87899d","keyword":"纳滤膜","originalKeyword":"纳滤膜"},{"id":"ab648c9d-4b25-4e58-b40f-b0ad96d717f3","keyword":"废水处理","originalKeyword":"废水处理"},{"id":"8305bc2a-b7d2-4637-bf7e-2d9ca9d65f8f","keyword":"回收","originalKeyword":"回收"}],"language":"zh","publisherId":"ddyts200904012","title":"新型纳滤膜回收含镍废水的工业研究","volume":"28","year":"2009"},{"abstractinfo":"孔隙是化学镀镍层防腐蚀应用的制约因素。对Q235钢化学镀镍层采用硫酸铜置换封孔,通过贴滤纸法和盐水浸泡法研究了封孔后镀镍层的孔隙率和耐蚀性能。结果表明:硫酸铜置换可对镀镍层表面的孔隙进行封堵,封孔后化学镀镍层的孔隙率优于相同厚度的镀层,当硫酸铜置换次数达到3次时,孔隙率基本为零,可明显提高化学镀镍件在氯化钠溶液中的耐蚀性能。","authors":[{"authorName":"汪玉祥","id":"b7aebea9-e113-4e3b-a0bf-aed722f7efb7","originalAuthorName":"汪玉祥"},{"authorName":"王会林","id":"0f3a149b-3f87-4309-bc7e-7d0af64bfaf9","originalAuthorName":"王会林"}],"doi":"","fpage":"49","id":"9b0f322f-02d2-46d4-b2fa-51ac8b42984d","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"45a6ba68-e3fa-4174-adc1-409bf0b2448e","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"3f70e1bd-ad1c-44b3-a48f-238e85bb8237","keyword":"硫酸铜","originalKeyword":"硫酸铜"},{"id":"28405242-9584-42a4-87a0-510a2e93aef0","keyword":"置换封孔","originalKeyword":"置换封孔"},{"id":"24b7e731-aae3-48a2-80dc-c42b718e400f","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"2a40800d-a05c-47dc-a2de-1183075a39fb","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"0a8a4e9a-ad57-4dc1-be99-c5a6d2d2fa13","keyword":"Q235钢","originalKeyword":"Q235钢"}],"language":"zh","publisherId":"clbh201212017","title":"化学镀镍层的置换法封孔","volume":"45","year":"2012"},{"abstractinfo":"研究了一种新型的镍磷合金镀层镀后处理工艺,即在常温下,采用化学的方法对镍磷合金镀层进行封孔处理.利用不同施镀时间的镍磷合金镀层模拟具有不同孔隙率的镍磷合金镀层,并采用涂膏法对封孔前、后镍磷合金镀层的孔隙率进行了测定.结果表明:经封孔处理的镍磷合金镀层的孔隙率大幅度下降.采用动电位极化技术测试了镍磷合金镀层封孔处理前、后的极化曲线,发现:经封孔处理后的镍磷合金镀层,腐蚀电位正移,腐蚀电流减小.通过扫描电镜观察了封孔处理后镍磷合金镀层的表面形貌,可见:经封孔处理后的镍磷合金镀层表面形成了一层保护膜,使镍磷合金镀层的孔隙得以封闭.\n","authors":[{"authorName":"俞宏英","id":"a25a83aa-dc01-47f7-8e4f-bb331a5863f4","originalAuthorName":"俞宏英"},{"authorName":"孙冬柏","id":"2fe91ecd-c4ae-4f3a-abb5-0203cca25d7f","originalAuthorName":"孙冬柏"},{"authorName":"黄锦滨","id":"bbe0d528-f861-47f5-8201-5891324d3135","originalAuthorName":"黄锦滨"},{"authorName":"杨德钧","id":"52345e5b-b960-41e5-bee5-b4f0bbf3a9f2","originalAuthorName":"杨德钧"}],"doi":"","fpage":"262","id":"c5dde5b9-d657-4192-b07a-c970aac55998","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a70be5c7-2062-4754-8399-d0d7d79934d7","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"3c55270a-a8ff-4cbc-9afd-88263a6939d7","keyword":"封孔处理","originalKeyword":"封孔处理"},{"id":"493046c5-a62e-4c18-8b1c-9655ceecbf85","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"gncl200103015","title":"化学镀镍磷合金镀层封孔处理工艺及性能","volume":"32","year":"2001"},{"abstractinfo":"通过分析锂盐与锆盐两种无镍封孔工艺各自对铝阳极氧化膜封孔所存在的优缺点,提出了一种二步法——复合无镍封孔工艺,即第1步用锂盐对铝阳极氧化膜进行封孔,第2步再用锆盐对相同铝阳极氧化膜进行复合封孔,从而既克服了锆盐和锂盐1步法封孔工艺存在的缺点,又保留了各自的优点,使工艺的适应性得到一定改善,使铝阳极氧化膜综合封闭孔质量及重要性能得到较大提高.","authors":[{"authorName":"黄允芳","id":"daf56d63-fb59-4844-80b8-8a02c8f199c4","originalAuthorName":"黄允芳"},{"authorName":"蔡锡昌","id":"84f05dea-9313-4a9f-959f-ad7a76c52b46","originalAuthorName":"蔡锡昌"}],"doi":"10.3969/j.issn.1001-3849.2017.03.002","fpage":"4","id":"4572eec3-5f75-4e4a-a0ed-7510ffb61742","issue":"3","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"d71bd75c-f66b-4329-b06b-a4e931a6c5e4","keyword":"铝","originalKeyword":"铝"},{"id":"6922d2e2-fb8b-49f1-9c82-e5fa4dd25f34","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"d2de905e-ba34-4406-a7a1-be07969ab59f","keyword":"无镍","originalKeyword":"无镍"},{"id":"4ae320c0-03ab-4628-8b28-64ca019256f2","keyword":"封孔","originalKeyword":"封孔"}],"language":"zh","publisherId":"ddjs201703002","title":"铝阳极氧化膜采用复合无镍封孔工艺的研究","volume":"39","year":"2017"},{"abstractinfo":"利用溶胶-凝胶法在化学镀镍层表面制备出TiO2、TiO2-SiO2膜.研究了热处理温度和涂覆次数对涂层表面成分及其耐蚀性、抗氧化性和耐磨性的影响.结果表明,经四次涂覆后,TiO2、TiO2-SiO2溶胶-凝膜层具有很好的耐蚀性和抗高温氧化性,少量钼、铬元素的加入可提高TiO2溶胶-凝胶膜的耐磨性.","authors":[{"authorName":"朱立群","id":"c8ed9626-03bd-4f33-9252-f1dfd83dcc2c","originalAuthorName":"朱立群"},{"authorName":"刘慧丛","id":"b549bb74-d234-4d8d-90fd-402b9deb9496","originalAuthorName":"刘慧丛"},{"authorName":"吴俊","id":"d77cea34-9639-4793-a023-1d3574287566","originalAuthorName":"吴俊"}],"doi":"10.3969/j.issn.1004-227X.2002.03.007","fpage":"29","id":"f6487674-b3a0-4d52-873f-c66d03c23b2b","issue":"3","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"497b290c-9005-4d4b-b8f1-3a2bf2764ea4","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"8e6a7f5c-6421-4fb1-a7c0-cc11d8be66cf","keyword":"封孔","originalKeyword":"封孔"},{"id":"e8daf12d-9e9a-471f-afa6-f3a0a6c68dd7","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"}],"language":"zh","publisherId":"ddyts200203007","title":"化学镀镍层封孔新工艺的研究","volume":"21","year":"2002"},{"abstractinfo":"本文根据铝材表面封孔剂的封孔原理,结合封孔剂各组分的物理、化学性质,详细研究了封孔剂的组成、配比对封孔性能的影响,并对封孔剂配方进行了优化,其优化的封孔剂配方(质量比)为:四水合乙酸镍∶乙酸-乙酸钠∶表面活性剂∶防粉剂∶固色剂∶稳定剂=40.0∶ 13.5∶7.0∶ 13.0∶ 19.0∶10.0.在相同工艺条件下对优化封孔剂与进口封孔剂进行了对比试验,结果表明优化的封孔剂能达到与进口封孔剂相同的封孔性能.","authors":[{"authorName":"陈淑刚","id":"760bbf62-2084-4b39-9d23-384d401ffa76","originalAuthorName":"陈淑刚"},{"authorName":"蒋开勇","id":"5cda6313-b7dc-4270-b3b8-978126bef9f0","originalAuthorName":"蒋开勇"}],"doi":"","fpage":"1191","id":"cf5bedb8-fab0-49f1-a423-fe70973c2345","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"cc74eb63-c5ba-457a-8ea8-f9208c118d2b","keyword":"铝材","originalKeyword":"铝材"},{"id":"a0f6bb07-b0d7-4f20-89b2-e94956722672","keyword":"封孔剂","originalKeyword":"封孔剂"},{"id":"be546ae9-7aaf-4f16-b4d8-131fca6e413c","keyword":"封孔效果","originalKeyword":"封孔效果"},{"id":"e24cd860-3912-428e-b1b6-4245bab80464","keyword":"镍水解法","originalKeyword":"镍水解法"}],"language":"zh","publisherId":"gsytb201306038","title":"铝材表面封孔剂研究","volume":"32","year":"2013"},{"abstractinfo":"本文总结了铝阳极氧化膜封孔技术的发展和工业应用现况.介绍沸纯水封孔、高温水蒸气封孔、冷封孔(含镍和无镍)、中温封孔和有机聚合物膜等工艺.突出介绍了在工业上广泛应用的沸水封孔、氟化镍为基的冷封孔和电泳沉积丙烯酸树脂技术,还介绍了欧洲对于封孔质量评价方法的最新改进措施.","authors":[{"authorName":"朱祖芳","id":"c923ca7c-db5e-45ea-94b6-66ad2459210f","originalAuthorName":"朱祖芳"}],"doi":"10.3969/j.issn.1004-227X.2000.03.011","fpage":"32","id":"c9d300d6-f51b-488b-8001-66415ff70672","issue":"3","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"c557d55c-fa83-4dd8-ac2c-d0a6a0f8b0bc","keyword":"铝阳极氧化膜","originalKeyword":"铝阳极氧化膜"},{"id":"2484f436-2f64-4495-87cc-3171ca762fd9","keyword":"封孔技术","originalKeyword":"封孔技术"},{"id":"33dff341-c5cc-4a95-acf8-00e36c0bf5e7","keyword":"检测方法","originalKeyword":"检测方法"}],"language":"zh","publisherId":"ddyts200003011","title":"铝阳极氧化膜封孔技术之进展","volume":"19","year":"2000"}],"totalpage":760,"totalrecord":7600}