{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用直流磁控溅射法在室温玻璃衬底上制备出了可见光透过率高、电阻率低的掺锆氧化锌(ZnO: Zr)透明导电薄膜.并系统地研究了靶与衬底之间的距离对ZnO: Zr薄膜结构、形貌、光学及电学性能的影响.实验结果表明,靶与衬底之间的距离对ZnO: Zr薄膜的生长速率、结晶质量及电学性能有很大影响,而对其光学性能影响不大.实验制备的ZnO: Zr为六方纤锌矿结构的多晶薄膜,且具有垂直于衬底方向的c轴择优取向.当靶与衬底之间的距离从60 mm减小到50 mm时,薄膜的晶化程度提高、晶粒尺寸增大,薄膜的电阻率减小;然而,当距离继续减小时,薄膜的晶化程度降低、晶粒尺寸减小,薄膜的电阻率增大.当靶与衬底之间的距离为50 mm时,薄膜的电阻率达到最小值4.2×10-4 Ω·cm,其可见光透过率超过95%.实验制备的ZnO: Zr薄膜可以用作薄膜太阳能电池和液晶显示器的透明电极.","authors":[{"authorName":"张化福","id":"f0c3d7e9-2373-4ac2-b0fb-8f54d1f0ee0d","originalAuthorName":"张化福"},{"authorName":"陈钦生","id":"ee8fbe21-4bd5-4535-b4ad-fa18124b05e7","originalAuthorName":"陈钦生"},{"authorName":"刘汉法","id":"4bccb806-393f-405b-9b62-b534d14a0596","originalAuthorName":"刘汉法"}],"doi":"","fpage":"1412","id":"b6492d2b-c056-4642-92fb-277bf0f33ef3","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"b9f7f190-5152-475b-bb54-486ec6effc09","keyword":"靶与衬底之间的距离","originalKeyword":"靶与衬底之间的距离"},{"id":"546f5ee1-9ef9-4202-a7f4-5fb372cb8a05","keyword":"ZnO:Zr","originalKeyword":"ZnO:Zr"},{"id":"45d49ae4-5776-4d9c-a327-0f1a01686d49","keyword":"透明导电薄膜","originalKeyword":"透明导电薄膜"},{"id":"17042be0-6632-4926-be3b-bffcf00af112","keyword":"磁控溅射","originalKeyword":"磁控溅射"}],"language":"zh","publisherId":"rgjtxb98201006013","title":"靶与衬底之间的距离对ZnO:Zr透明导电薄膜性能的影响","volume":"39","year":"2010"},{"abstractinfo":"建设在同一路由内的管道和高压交流输电线,管道不可避免地受到高压交流输电线的干扰,而管道与高压线之间的安全距离则是保证管道不必采取排流的重要指标.为探究埋地管道与高压交流输电线安全距离的问题,分别取4,6,8,10V作为管道上感应电压的限值,利用相关软件研究了高压线稳态运行电流、管道与高压线的平行长度和土壤电阻率对安全距离的影响规律.结果表明,把4V作为感应电压限值时,安全距离远大于其他三个限值对应的安全距离;随着平行长度、稳态运行电流和土壤电阻率的增大,安全距离也相应增大.","authors":[{"authorName":"杨超","id":"ce691ce8-7d3e-4349-9d9d-4461d8f46c94","originalAuthorName":"杨超"},{"authorName":"李自力","id":"1e5b2cc8-aed7-4f04-92ab-3cd97dce0a48","originalAuthorName":"李自力"},{"authorName":"崔淦","id":"7c01606c-ad08-4306-8e3e-d1d0773b8212","originalAuthorName":"崔淦"},{"authorName":"丁小勇","id":"c15e671a-8e41-41ad-a70a-ff8343e1180f","originalAuthorName":"丁小勇"}],"doi":"10.11973/fsyfh-201601013","fpage":"56","id":"07d01b21-67e9-41fe-8c29-b37f367eeadf","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"de5c4d3d-0d88-40c2-8735-b5fa668dc093","keyword":"埋地管道","originalKeyword":"埋地管道"},{"id":"79ee3c57-92f3-4b27-a5b7-db9c960dc825","keyword":"高压交流输电线","originalKeyword":"高压交流输电线"},{"id":"10a9ca64-1d37-460a-88e9-73833f0657d5","keyword":"感应电压","originalKeyword":"感应电压"},{"id":"ec04e1cb-e4e2-4926-a045-1d420d490b0d","keyword":"安全距离","originalKeyword":"安全距离"}],"language":"zh","publisherId":"fsyfh201601013","title":"埋地管道与高压交流输电线之间的安全距离","volume":"37","year":"2016"},{"abstractinfo":"实验利用直流和射频磁控溅射方法交替沉积Cu-SiO2纳米复合膜,研究不同Cu靶功率和衬底温度对纳米复合膜的相结构和光吸收性能的影响.结果表明:随着Cu靶功率的增加,金属Cu纳米颗粒尺寸增大,导致光吸收峰峰位发生红移;随着衬底温度的升高,由于Cu再蒸发效应致使金属Cu纳米颗粒尺寸减小,引起光吸收峰峰位发生蓝移;与室温下沉积态Cu-SiO2纳米复合膜相比,在衬底加热条件下沉积的纳米复合膜在可见光波段出现了明显的表面等离子体共振吸收峰.因此,Cu靶功率和衬底温度对Cu-SiO2纳米复合薄膜的结晶状况和光吸收性能有显著影响.","authors":[{"authorName":"赵志明","id":"8b38c0dd-f151-4389-b876-edf268966a03","originalAuthorName":"赵志明"},{"authorName":"邢少敏","id":"8088835b-ad65-4970-a456-b94ed70489fc","originalAuthorName":"邢少敏"},{"authorName":"张国君","id":"f0b79670-074c-4313-b1a9-8dc978a3bf24","originalAuthorName":"张国君"},{"authorName":"白力静","id":"92550d2c-8de4-4c38-8b82-73c8a22802f7","originalAuthorName":"白力静"}],"doi":"","fpage":"2539","id":"ed8b033d-3c76-4926-8280-7a81a68f1948","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c9110d73-1ab2-457c-a4c5-85710190e076","keyword":"Cu-SiO2纳米复合膜","originalKeyword":"Cu-SiO2纳米复合膜"},{"id":"60c0eea7-25e6-4323-8d03-e15456c95671","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"5b8100f9-e9f3-4ce1-8115-ebe69ea1f319","keyword":"相结构","originalKeyword":"相结构"},{"id":"eb1ca0a9-faa8-43b9-8c28-8129421bd564","keyword":"光吸收性能","originalKeyword":"光吸收性能"}],"language":"zh","publisherId":"xyjsclygc201510039","title":"Cu靶功率和衬底温度对Cu-SiO2纳米复合膜的相结构与光吸收性能影响","volume":"44","year":"2015"},{"abstractinfo":"采用基于密度泛函理论框架下的第一性原理,研究石墨烯与Ge衬底之间的界面结构.计算结果表明,在3种衬底Ge(111)、Ge(100)和Ge(110)上界面结合能有相同的规律,均在平衡距离为3.3A时获得最低能量,平均每个碳原子的界面结合能分别为24.3 meV、21.1 meV和23.3 meV;通过构造0~60°之间不同的界面夹角,发现一个高对称性的界面结构;相比本征Ge衬底,石墨烯与H钝化后Ge衬底之间的界面平衡距离增大,结合能降低;H钝化能有效地屏蔽石墨烯与Ge衬底之间的相互作用,恢复了本征石墨烯的电子性质,起到缓冲层作用.","authors":[{"authorName":"史晓华","id":"a923e6a0-7631-4792-afcf-de115bf07876","originalAuthorName":"史晓华"},{"authorName":"王刚","id":"a1191ece-2093-4265-b843-4106b16a8cd4","originalAuthorName":"王刚"},{"authorName":"郭庆磊","id":"2bbd32cf-0928-4041-8fe9-203b62e5c317","originalAuthorName":"郭庆磊"},{"authorName":"张苗","id":"a36ff7a6-43e3-42a0-83d5-9b3c2d320a9d","originalAuthorName":"张苗"},{"authorName":"狄增峰","id":"012211f3-059b-4d5f-af4e-cae97da8011a","originalAuthorName":"狄增峰"}],"doi":"10.11896/j.issn.1005-023X.2015.10.032","fpage":"137","id":"1b9b7e90-123e-4071-aa29-f60541976417","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"72a7c0d7-0313-4321-8fd5-8e9925082bf8","keyword":"锗衬底","originalKeyword":"锗衬底"},{"id":"b2d1a4b4-c7c3-4689-a9f0-f5e4002be3ba","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"a5c983f8-4bc4-491f-acef-951f1c10ab1e","keyword":"界面结构","originalKeyword":"界面结构"},{"id":"51706abe-d140-476e-a140-ff5968e621e8","keyword":"第一性原理","originalKeyword":"第一性原理"}],"language":"zh","publisherId":"cldb201510032","title":"石墨烯与锗衬底界面结构的第一性原理研究","volume":"29","year":"2015"},{"abstractinfo":"以硫化镉(CdS )为主要原料,氯化镉(C dC l2)为助熔剂,采用干压成型、真空烧结的方式制备CdS陶瓷靶材。探讨了原料性质、烧结温度、CdCl2添加量对靶材相对密度、烧结线收缩率、显气孔率及表面电阻率的影响。用阿基米德法测定靶材密度、用四探针测试仪测试靶材表面电阻率、用X RD测试靶材晶相结构、用SEM 观察靶材微观形貌。实验结果表明,靶材试样的晶相主要为六方相CdS ,晶粒均匀(晶粒大小在3~8μm之间),密度达到45.5 g/cm3,显气孔率45.9%,表面电阻率892.Ω?cm ,能满足磁控溅射镀膜工艺对靶材的指标要求。","authors":[{"authorName":"董雪振","id":"4e518568-2bd4-4f87-ab5e-5975f4c7217c","originalAuthorName":"董雪振"},{"authorName":"吴任平","id":"2eee80c9-4138-4248-88c9-15fae896ec35","originalAuthorName":"吴任平"}],"doi":"10.3969/ji.ssn1.001-97312.0151.70.31","fpage":"17140","id":"57138212-375f-4833-b9f0-f0ab03749ffe","issue":"17","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d127ff23-f9ea-4bcd-8226-8163acfab96f","keyword":"CdS","originalKeyword":"CdS"},{"id":"6c7897ee-57c7-442a-a959-f382b90cd4a1","keyword":"陶瓷靶材","originalKeyword":"陶瓷靶材"},{"id":"c189e081-3468-4415-bfaa-87c29b437fa2","keyword":"太阳能薄膜电池","originalKeyword":"太阳能薄膜电池"}],"language":"zh","publisherId":"gncl201517031","title":"硫化镉陶瓷靶材的制备与性能表征","volume":"","year":"2015"},{"abstractinfo":"针对9900型靶材与靶托的连接中存在的难题分析其原因, 对此采取了一些措施, 通过靶材大小, 焊料的改进和热处理等, 实现了Ni-Cr合金、铬、银靶与铜底托的连接,生产出产品的批量使用证明, 焊接质量完全满足使用要求.","authors":[{"authorName":"韩雪","id":"32756964-5d9c-4ad1-85f1-36d95a530476","originalAuthorName":"韩雪"}],"doi":"10.3969/j.issn.0258-7076.2000.04.019","fpage":"317","id":"3f15e935-aa61-4d4b-8818-68c607e43230","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"f2ff3280-a43b-4495-a046-58d330f40eb1","keyword":"靶材","originalKeyword":"靶材"},{"id":"c8120a9b-5ab9-4090-b1a4-1b25a59275b2","keyword":"靶托","originalKeyword":"靶托"},{"id":"defaacfd-8ba6-4fa1-a166-461c2c601c63","keyword":"连接","originalKeyword":"连接"},{"id":"c8950244-6af3-4be0-801f-5999255af654","keyword":"退火","originalKeyword":"退火"},{"id":"09db3b1e-15f0-470e-995f-508c340fe0ad","keyword":"脱焊","originalKeyword":"脱焊"}],"language":"zh","publisherId":"xyjs200004019","title":"9900型靶材与靶托的连接技术","volume":"24","year":"2000"},{"abstractinfo":"采用电子探针微分析术研究了机械复合和冶金复合两种界面状态的Nb-Ti/Cu复合超导线,以及Nb-Ti/Cu,Ti/Cu和Nb/Cu偶的扩散反应过程.结果表明,原始组件的界面状态对Nb-Ti/Cu间金属间化合物的生成有明显的影响.机械复合组件较冶金复合组件能承受更高的热处理温度而不致生成金属间化合物.Ti与Cu之间反应生成化合物的次序与形态及NbTi与Cu之间不同.Ti/Cu间生成化合物的厚度y与时间t关系遵循y~(1.5-t)的规律.","authors":[{"authorName":"徐乐英","id":"70f23851-0f3b-4749-bcfd-53d44e376a6f","originalAuthorName":"徐乐英"},{"authorName":"王文斌","id":"ccca181c-b0cb-4699-b9e1-6409f9ca6f72","originalAuthorName":"王文斌"},{"authorName":"庄育智","id":"fa5910c9-ef0e-49ac-a2f4-4492ab1acfb5","originalAuthorName":"庄育智"}],"categoryName":"|","doi":"","fpage":"335","id":"ff17f8cd-a0f2-4b07-b415-e4c2c5f8e4db","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"5c517f54-0030-4119-aaf1-26eafabe6c33","keyword":"Cu","originalKeyword":"Cu"},{"id":"b7e534a5-2dba-4ab2-9d7f-3334a7b31490","keyword":"NbTi alloy","originalKeyword":"NbTi alloy"},{"id":"f294cdf4-0003-44e3-8be0-12337fbf0571","keyword":"diffusion couple","originalKeyword":"diffusion couple"},{"id":"3896f972-f510-4a4c-b339-c200a90bae07","keyword":"superconductor","originalKeyword":"superconductor"},{"id":"e9393557-30a0-4f0b-8af2-eda82d5a8444","keyword":"diffusion reaction","originalKeyword":"diffusion reaction"}],"language":"zh","publisherId":"0412-1961_1988_4_21","title":"Cu与NbTi之间扩散反应的研究","volume":"24","year":"1988"},{"abstractinfo":"将冲击功分为温度敏感分量和非温度敏感分量,通过对断裂过程中能量的分析,认为冷脆性金属材料在下平台的断裂阻力主要决定于非温度敏感分量,在塑-脆过渡区,随着温度升高,温度敏感分量的作用越来越大.得到动态断裂韧度(KId)与冲击功(CVN)之间的关系:K2Id=A+B(CVN),该式在上平台、塑-脆过渡区和下平台对KId的预测均与试验结果符合得比较满意.","authors":[{"authorName":"刘瑞堂","id":"e26249e3-9aa6-4d74-a967-db51cd4a3839","originalAuthorName":"刘瑞堂"},{"authorName":"王俊","id":"0c4658b6-5418-4eba-abe9-f63b5cd6d6bd","originalAuthorName":"王俊"}],"doi":"10.3969/j.issn.1001-4381.2003.z1.090","fpage":"271","id":"dfd40658-bcf8-4af1-8a26-4af6fe576812","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"b5fa5b0e-accd-4972-88ed-70ec68f420cd","keyword":"动态断裂韧度","originalKeyword":"动态断裂韧度"},{"id":"c949380c-a984-4208-847c-56f80f9906ba","keyword":"示波冲击试验","originalKeyword":"示波冲击试验"},{"id":"ef5928c1-56e7-4e99-8fcd-6219ad3d33bf","keyword":"Charpy冲击功","originalKeyword":"Charpy冲击功"},{"id":"536b3ab9-6f0c-4cfa-8321-9a6df3602a76","keyword":"相关分析","originalKeyword":"相关分析"}],"language":"zh","publisherId":"clgc2003z1090","title":"动态断裂韧度与冲击功之间关系的探讨","volume":"","year":"2003"},{"abstractinfo":"散裂中子靶是加速器驱动洁净核能系统的一个重要环节. 相关的理论计算程序和蒙特-卡罗方法是研究该系统的散裂靶物理的一个重要手段. 对相关程序进行了比对和介绍, 并对SHIELD程序系统在中国的发展和在散裂靶物理上的应用作了介绍. ","authors":[{"authorName":"樊胜","id":"378ff75e-f424-4a87-a9c0-780220cfee5a","originalAuthorName":"樊胜"},{"authorName":"于洪伟","id":"b408eadd-3875-4d93-b6f1-3d5466c5a3aa","originalAuthorName":"于洪伟"},{"authorName":"申庆彪","id":"3d4d8df1-f825-4dda-ab64-b61acf5afc59","originalAuthorName":"申庆彪"},{"authorName":"赵志祥","id":"afc00b07-fa3c-4b47-8831-3cb5b069bc71","originalAuthorName":"赵志祥"}],"doi":"10.3969/j.issn.1007-4627.2002.04.005","fpage":"390","id":"adae6e98-3d4a-47db-864a-01ef1d8efda4","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"85a7b487-7876-4b1e-b4ce-3803d5b871be","keyword":"散裂中子靶","originalKeyword":"散裂中子靶"},{"id":"e2e0dcfb-1420-465a-916b-243f05b4bf42","keyword":"计算程序","originalKeyword":"计算程序"},{"id":"422bb266-22df-46c3-bd85-5f47d5fbf07e","keyword":"加速器驱动系统","originalKeyword":"加速器驱动系统"}],"language":"zh","publisherId":"yzhwlpl200204005","title":"与散裂中子靶物理相关的理论计算程序探讨II 厚靶计算","volume":"19","year":"2002"},{"abstractinfo":"本文在文献研究的基础上,设计了一种简单易行的试验装置,通过直剪试验测定复合纤维布与混凝土之间的粘结强度,得出各测点离端部距离-应变关系曲线,进而绘出复合纤维布中沿粘结方向的粘结应力分布,以确定有效粘结长度.所得初步结论为梁抗弯、抗剪加固的粘结提供设计参数.","authors":[{"authorName":"肖建庄","id":"52068f0c-07ad-4c9a-ab41-c86f5a3c4053","originalAuthorName":"肖建庄"},{"authorName":"李杰","id":"06b8ade3-b10b-4746-a11b-03aafc847eeb","originalAuthorName":"李杰"},{"authorName":"魏锦涛","id":"f008a4cd-c36c-43a5-8373-0fa8b3b95f1a","originalAuthorName":"魏锦涛"}],"doi":"10.3969/j.issn.1003-0999.2002.03.001","fpage":"3","id":"079d58db-11a3-44ec-9b9e-e2d486d3ee45","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"cf70d3d8-0b14-47e2-ab18-1e2c6d14825c","keyword":"复合纤维布","originalKeyword":"复合纤维布"},{"id":"0754285c-f9d3-453d-ab20-2df5bc75b481","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"507fd7a5-cc90-4871-8b94-14007d7ec9b4","keyword":"粘结力","originalKeyword":"粘结力"},{"id":"85a90083-af76-4db3-bc8d-29c75ed5d1de","keyword":"试验方法","originalKeyword":"试验方法"}],"language":"zh","publisherId":"blgfhcl200203001","title":"纤维布与混凝土之间粘结力的试验方法研究","volume":"","year":"2002"}],"totalpage":21676,"totalrecord":216759}