冯捷
,
李文兴
,
沈翃
,
郑轶荣
,
曲英
钢铁研究
doi:10.3969/j.issn.1001-1447.2004.06.011
介绍转炉炼钢过程自动控制的先进技术,包括:先进的检测技术;利用废气信息进行吹炼控制技术;利用炉渣信息进行吹炼控制技术;直接出钢控制技术;全自动吹炼控制技术;吹炼过程熔池温度和碳含量连续显示神经元网络系统;转炉吹炼终点人工智能静态控制模型;机器人的应用技术等.最大程度的采用这些技术,对扩大产品种类、冶炼精细的品种钢,提高产品质量有着重要意义.
关键词:
监测
,
信息
,
直接出钢
,
全自动
,
神经元网络
,
人工智能
,
机器人
丁敬国
,
胡贤磊
,
焦景民
,
佘广夫
,
刘相华
钢铁研究学报
为了避免BP神经元网络易陷入局部极值和基本粒子群(PSO)-神经元网络早熟收敛问题,采用一种自适应变异的粒子群优化算法训练神经元网络,根据轧制力的实测值和神经元网络的预报值确定粒子群算法的适应度函数,按照权重梯度方向进行变异操作,并首次将该方法应用到热连轧机组轧制力预报中.通过攀钢热轧板厂现场数据运算表明,该方法的预报误差平均值比传统数学模型低1.65%,比BP神经元网络低0.55%,收敛速度比BP神经元网络提高了约1/4,为进一步提高精轧机组轧制力预报精度提供了一种新的有效方法.
关键词:
粒子群算法
,
神经元网络
,
BP算法