{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用电子束快退火法制备了MgB2超导薄膜.该方法利用高能电子束,在中真空条件下照射Mg-B多层前驱膜,照射时间维持在1s以下.在电子束的作用下,前驱膜中的Mg和B迅速反应,形成MgB2相.整个退火过程没有Mg蒸气与氩气保护,极短的退火时间有效地限制了前驱膜中Mg的流失和Mg与其它物质的反应.与传统制备工艺相比,该方法避免了混合物理化学气相沉积法中乙硼烷的使用;省去异位退火法中提供高Mg蒸气压的限制,避免在有Mg块存在情况下退火后样品表面存在Mg污染的问题.利用该方法在SiC(001)衬底上生长了100nm厚的MgB2薄膜,其超导转变温度Tc~35K,均方根粗糙度为3.6nm,临界电流密度Jc(5K,0 T) =3.8×106 A/cm2.该方法对MgB2薄膜的大规模工业生产提供了一个新思路.","authors":[{"authorName":"戴倩","id":"b21a03ad-b194-4e57-a32b-cbf40a69adee","originalAuthorName":"戴倩"},{"authorName":"孔祥东","id":"2c09af99-515b-4827-93b5-232a05cc30d3","originalAuthorName":"孔祥东"},{"authorName":"冯庆荣","id":"1e4bd7aa-cc15-4487-a2be-676d5539fc07","originalAuthorName":"冯庆荣"},{"authorName":"韩立","id":"a7f612a6-7f77-48d3-9068-ef2ae4b06c92","originalAuthorName":"韩立"},{"authorName":"张怀","id":"766ffb11-6606-4f93-b5f7-dc2493fc7402","originalAuthorName":"张怀"},{"authorName":"杨倩倩","id":"39ec713a-a52c-4980-8ccd-f81f4ca88372","originalAuthorName":"杨倩倩"},{"authorName":"聂瑞娟","id":"f3913d2f-ed28-4683-b3a7-bc3c43518c5a","originalAuthorName":"聂瑞娟"},{"authorName":"王福仁","id":"4f05199e-c616-4168-9c22-ccfdce950689","originalAuthorName":"王福仁"}],"doi":"","fpage":"1","id":"2e48eb90-775e-430e-90ed-1e7365e67176","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"102de4ef-ef19-48be-b9ac-98c222c29dab","keyword":"电子束退火","originalKeyword":"电子束退火"},{"id":"a3f4a875-eae8-4739-bfab-10e0e1a3db97","keyword":"MgB2","originalKeyword":"MgB2"},{"id":"70ee84de-90bd-4313-9808-11266d7d5b8e","keyword":"超导薄膜","originalKeyword":"超导薄膜"}],"language":"zh","publisherId":"dwwlxb201301001","title":"电子束快退火法制备MgB2薄膜及性质研究","volume":"35","year":"2013"},{"abstractinfo":"采用第一性原理计算我们研究了Jahn-Teller(JT)畸变诱导下K2AgF4和Cs2AgF4中的轨道有序和磁性.K2AgF4的基态是层内反铁磁态(AFM2),此时最近邻的Ag2+磁矩互为反平行,而它们的轨道则是相互平行的.Cs2AgF4的基态是层间反铁磁态(AFM1),同一AgF2层中的Ag2+磁矩相互平行,与近邻的AgF2层中Ag2+磁矩互为反平行.这两种体系磁性基态都可以用Goodenough-Kanamori规则进行很好的解释.","authors":[{"authorName":"王广涛","id":"81851033-228f-4517-98fd-7830b7db296c","originalAuthorName":"王广涛"},{"authorName":"王东洋","id":"d55e04ac-c5bc-4006-973a-84933558cc4a","originalAuthorName":"王东洋"},{"authorName":"张琳","id":"6a7e8c82-4539-430b-9da5-6b659c48e6bd","originalAuthorName":"张琳"},{"authorName":"易霞","id":"b9823d8d-9887-4b8e-aea5-e98892a0c30b","originalAuthorName":"易霞"}],"doi":"","fpage":"185","id":"0383e5f1-8700-4c6c-8f7f-1a353cc62de4","issue":"3","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"372e68b8-5255-41fe-b069-f7e98b5b5941","keyword":"电子束退火","originalKeyword":"电子束退火"},{"id":"0f0cd8af-8b9c-4e0a-a20e-7358fd361ad5","keyword":"MgB2","originalKeyword":"MgB2"},{"id":"da0170de-14b5-4bfe-b595-8a1790d909ae","keyword":"超导薄膜","originalKeyword":"超导薄膜"}],"language":"zh","publisherId":"dwwlxb201503005","title":"K2AgF4和Cs2AgF4的电子结构和磁性","volume":"37","year":"2015"},{"abstractinfo":"利用溶胶一凝胶法制备出ZnO的凝胶前驱膜,用电子束退火取代传统炉子退火,对前驱膜进行后处理,退火时固定电子束加速电压为10 kV,退火时间为5 min,调节聚焦束流和电子束束流,使退火温度在600~900℃范围内变化.扫描电镜(SEM)、X射线衍射(XRD)、原子力显微镜(AFM)和压电力显微镜(PFM)的测试结果表明,运用电子束退火法可制备出晶粒尺寸小于30nm、沿(002)择优取向、具有压电效应的六方ZnO薄膜,且随着退火温度的升高,晶粒尺寸逐渐变大,薄膜的结晶性和取向变好,压电效应越来越明显.","authors":[{"authorName":"李艳丽","id":"a4224059-03ac-4585-afe8-547c66c5cd97","originalAuthorName":"李艳丽"},{"authorName":"许壮","id":"0e366815-91bc-4ded-94e5-ba76e75d9733","originalAuthorName":"许壮"},{"authorName":"李辉","id":"4a0be0de-ae19-454c-8b25-aa06cdaa1fec","originalAuthorName":"李辉"},{"authorName":"孔祥东","id":"1ec2aad7-8586-4ed5-b5b1-27b2502643cb","originalAuthorName":"孔祥东"},{"authorName":"韩立","id":"01c52ae3-4229-4a32-bd8f-b2a63f703b36","originalAuthorName":"韩立"},{"authorName":"张雪娜","id":"c0707453-851b-4320-8993-1e4d5f1c1eea","originalAuthorName":"张雪娜"}],"doi":"10.11896/j.issn.1005-023X.2017.02.009","fpage":"41","id":"cf05f33b-d79c-4592-b17d-f09f3e49dc9f","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"cd6f6d0e-b513-4120-9e7a-f08d849f2f77","keyword":"电子束","originalKeyword":"电子束"},{"id":"979c57ff-6356-4fc9-8d97-3565333485a5","keyword":"退火","originalKeyword":"退火"},{"id":"262d0846-1ff7-4b80-8396-70ed84cd2b99","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"7be3784e-91b3-4016-8ef2-2c7ddd74ea83","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"e0a2fb85-2109-4d29-aa98-9c0bc423c511","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"cldb201702009","title":"电子束退火法制备ZnO薄膜","volume":"31","year":"2017"},{"abstractinfo":"采用普通退火和去应力退火两种退火工艺对TC18钛合金电子束焊接接头进行焊后热处理,研究了退火处理对焊接接头显微组织、拉伸性能和冲击性能的影响,并将接头的性能与母材的进行了对比。结果表明:与去应力退火相比,普通退火后,显微组织中的α相含量减少,β相含量增多,接头的强度降低,塑性更高;两种方式退火后,母材和焊接接头的拉伸性能相差不大,但母材的冲击性能优于焊接接头的。","authors":[{"authorName":"张思聪","id":"87449a02-25fa-4571-b289-253978430389","originalAuthorName":"张思聪"},{"authorName":"雷永平","id":"1f349cf2-48f3-4849-846f-f5293217178a","originalAuthorName":"雷永平"},{"authorName":"刘昕","id":"533eedf6-d9ad-411e-900f-8c11af9daa53","originalAuthorName":"刘昕"}],"doi":"10.11973/jxgccl201701006","fpage":"30","id":"b565426d-5982-4784-a416-2c3274bdec77","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"1a7bdf3b-4f9d-41d9-8327-2102541261ea","keyword":"TC1 8 钛合金","originalKeyword":"TC1 8 钛合金"},{"id":"c6b91e66-3f00-49b9-98ac-ce6e6d4b951c","keyword":"电子束焊接","originalKeyword":"电子束焊接"},{"id":"12a547a5-b893-4426-b099-3a192e28a147","keyword":"退火处理","originalKeyword":"退火处理"},{"id":"7e97c767-7f5f-48c4-97f1-bd01e029f956","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jxgccl201701009","title":"退火对TC 18钛合金电子束焊接接头组织与力学性能的影响","volume":"41","year":"2017"},{"abstractinfo":"论文综述了电子束固化树脂基复合材料技术的特点及其在国内外的研究及发展状况,并介绍了可电子束固化的环氧树脂和光引发剂及其阳离子固化机理;具体地描述了经电子束固化的树脂浇铸体及复合材料的性能.","authors":[{"authorName":"王宇光","id":"68172cc6-7c4d-4ba6-8be0-fb7efaf5c80d","originalAuthorName":"王宇光"},{"authorName":"黎观生","id":"b137ba13-8711-4b1a-80bb-3576831f087b","originalAuthorName":"黎观生"},{"authorName":"张庆茂","id":"d89d88f5-0e3a-456e-a3c7-f9f35600e998","originalAuthorName":"张庆茂"},{"authorName":"李黎","id":"4823809a-0903-4d9e-a65c-977f3da0bc7e","originalAuthorName":"李黎"},{"authorName":"江璐霞","id":"4db9a277-610a-4a2e-8052-a4441c515751","originalAuthorName":"江璐霞"}],"doi":"10.3969/j.issn.1009-9239.2002.06.006","fpage":"27","id":"d3bbfde6-a5b6-4fe8-a35a-1d29f368bf40","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"41be70c5-4baf-4f7e-82b3-51f35d33740e","keyword":"电子束固化","originalKeyword":"电子束固化"},{"id":"fe0069fb-07e5-4eb9-b1c7-e2c99d72e557","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"12cbdbeb-6683-4b33-b7df-d78db0499f0d","keyword":"光引发剂","originalKeyword":"光引发剂"}],"language":"zh","publisherId":"jycltx200206006","title":"电子束固化技术及可电子束固化环氧树脂体系","volume":"35","year":"2002"},{"abstractinfo":"对电子束物理气相沉积高硅硅钢片进行了高温快速退火处理.用SEM,EDS,XRD对制备态硅钢片和热处理态组织,成分,物相进行了表征,并测试了其电阻率和磁滞回线.结果表面:高温快速退火使高硅硅钢片硅成分变均匀,靠近基板侧的相由Fe3Si变成DO3;硅钢片中孔长大,电阻率从90μΩ·m增大到160μΩ·m,矫顽力减小,磁感应强度减小.","authors":[{"authorName":"李晓","id":"bc23871f-df5c-4643-97ae-847f40d19840","originalAuthorName":"李晓"},{"authorName":"孙跃","id":"b049c258-8320-4e9d-9eb6-9c25d640eb76","originalAuthorName":"孙跃"},{"authorName":"赫晓东","id":"aa5e8686-7801-42e6-b939-b40f5ce0a142","originalAuthorName":"赫晓东"}],"doi":"","fpage":"1603","id":"345ef55a-0411-4ba1-88d9-2764c9074305","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2819656d-aabc-49da-b5cc-07c44fb7b150","keyword":"高温快速退火","originalKeyword":"高温快速退火"},{"id":"9ebaa896-2443-4f44-a095-9e042cca19ea","keyword":"高硅硅钢片","originalKeyword":"高硅硅钢片"},{"id":"93ec0420-af10-45bc-b97f-a2df26198015","keyword":"电子束物理气相沉积","originalKeyword":"电子束物理气相沉积"}],"language":"zh","publisherId":"gncl200710012","title":"高温快速退火对电子束物理气相沉积制备高硅硅钢片的影响","volume":"38","year":"2007"},{"abstractinfo":"采用电子束蒸镀方法在Si(100)衬底上沉积了ZnO:Al(ZAO)薄膜.在氧气气氛下对ZnO:Al薄膜进行了退火处理,退火温度的范围为400~800℃.X射线衍射(XRD)图样表明所制备的ZnO:Al薄膜具有六方结构,为c轴(002)择优取向的多晶薄膜.用Van der Pauw法测量了ZAO薄膜的电学特性,结果显示其电导率在500℃达到最大值.测量了ZAO薄膜的室温微区光致发光和变温发光光谱,观测到了ZnO自由激子、束缚在中性施主中心(D0)上的束缚激子以及束缚在离化施主中心(D+0)上的束缚激子发射.","authors":[{"authorName":"骆英民","id":"6ed2560c-d615-4fa6-a26d-ad7c7b3bfb61","originalAuthorName":"骆英民"},{"authorName":"马剑刚","id":"be6e06ea-fd0c-4b1a-b764-9ad5ae3d4bfc","originalAuthorName":"马剑刚"},{"authorName":"徐海阳","id":"3a654f5b-336c-4f2d-bc67-493433e02a02","originalAuthorName":"徐海阳"},{"authorName":"刘益春","id":"84ccbc81-555a-44ee-8da9-0bfe9bd50637","originalAuthorName":"刘益春"},{"authorName":"钟殿强","id":"d787cec8-5f77-4787-86c3-31592ae3a662","originalAuthorName":"钟殿强"},{"authorName":"齐秀英","id":"29fd9ea7-1973-40c8-93e6-aef9d341e653","originalAuthorName":"齐秀英"}],"doi":"10.3969/j.issn.1000-985X.2004.05.018","fpage":"776","id":"b66c3306-abb5-4f1e-9f1d-1ef8d83ce2ff","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f5ceb5a8-7246-4756-b4b5-921c0bd43e0c","keyword":"ZnO:Al薄膜","originalKeyword":"ZnO:Al薄膜"},{"id":"f988e0d8-764a-460e-8aec-bba781a3df7e","keyword":"电子束蒸镀","originalKeyword":"电子束蒸镀"},{"id":"840a65ae-035b-4dbf-8a36-4dd9cdbca681","keyword":"退火","originalKeyword":"退火"},{"id":"00ff4daa-3aa6-4bae-b2e7-7138b43229bb","keyword":"Van der Pauw法","originalKeyword":"Van der Pauw法"},{"id":"e90f385f-cc6f-45bf-8186-34e70cf43f29","keyword":"光致发光谱","originalKeyword":"光致发光谱"}],"language":"zh","publisherId":"rgjtxb98200405018","title":"热退火对电子束蒸镀方法制备的ZnO:Al薄膜光电性质的影响","volume":"33","year":"2004"},{"abstractinfo":"制备高质量的MgB2薄膜是实现MgB2超导电子器件应用的前提和基础.我们用电子束蒸发B膜和Mg/B多层膜为前驱然后后退火的方法,分别在高温区(~900℃)和中温区(~750℃)成功获得了MgB2超导薄膜.改变退火的Ar气压条件,采用B膜前驱退火的样品Tc可达到38K以上,转变宽度0.3K.Mg/B多层膜的结果尽管Tc稍低(Tc~35K),但薄膜表面更加均匀,且避免了高温下Mg蒸汽污染的问题.对于两种前驱退火中观察到的完全不同的退火气压影响,我们认为是与其各自的超导成相过程相联系的,在此基础上我们对退火气压效应给出了自己的分析和解释,为今后进一步细致研究退火过程中的薄膜生长机制提供了参考.","authors":[{"authorName":"吴克","id":"7fdb04c4-775d-40b8-b3b5-8b4c950c3f51","originalAuthorName":"吴克"},{"authorName":"余增强","id":"e0a2516f-fe82-4c35-ba7b-66c4eaac0830","originalAuthorName":"余增强"},{"authorName":"张解东","id":"7e77d741-ae81-4e76-b703-8ac690a36fcb","originalAuthorName":"张解东"},{"authorName":"王守证","id":"dc420579-9e62-4ced-8a9e-7538f83816cf","originalAuthorName":"王守证"},{"authorName":"聂瑞娟","id":"ed01642a-0bb9-4132-bbe4-0de6ed3a19c0","originalAuthorName":"聂瑞娟"},{"authorName":"王福仁","id":"1b97f7b8-58b5-4005-b7c9-f34ae64bc44c","originalAuthorName":"王福仁"}],"doi":"10.3969/j.issn.1000-3258.2006.03.003","fpage":"212","id":"041ba4c5-f7c8-4b18-9096-7ff4acc8d3cf","issue":"3","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"01948e2c-51bc-4cb7-8847-87cf4c434425","keyword":"MgB2薄膜","originalKeyword":"MgB2薄膜"},{"id":"65b523eb-b8b6-46a4-8492-87aa8b85c949","keyword":"电子束蒸发","originalKeyword":"电子束蒸发"},{"id":"0b8b0319-370e-4296-8c9a-fa56f0e141ca","keyword":"外退火","originalKeyword":"外退火"},{"id":"c05285a2-7354-4717-9bd1-60f2bdc4abba","keyword":"超导成相","originalKeyword":"超导成相"}],"language":"zh","publisherId":"dwwlxb200603003","title":"电子束蒸发在不同Ar气氛下外退火制备MgB2超导薄膜","volume":"28","year":"2006"},{"abstractinfo":"综述了电子束固化工艺相对于传统热固化工艺的特点,并从以下几方面介绍电子束固化技术的一些进展:自由基电子束固化聚合物基体、阳离子电子束固化聚合物基体、电子束固化复合材料界面特点和改性方法,并对电子束固化树脂基复合材料中存在的问题进行评述.","authors":[{"authorName":"刘玉文","id":"d4817020-7c96-4749-8fed-c78c445a5165","originalAuthorName":"刘玉文"},{"authorName":"张志谦","id":"219678ee-0696-4798-9663-784d41691b64","originalAuthorName":"张志谦"},{"authorName":"黄玉东","id":"a383688a-4e3e-45fa-b5cf-433ee8533406","originalAuthorName":"黄玉东"},{"authorName":"黄国丰","id":"83d602b8-ec37-4861-9a29-4188a1d7ec4e","originalAuthorName":"黄国丰"},{"authorName":"包建文","id":"ee91060b-1c70-4fdc-84fc-9c44bbbe6a11","originalAuthorName":"包建文"}],"doi":"10.3969/j.issn.1005-0299.2000.03.023","fpage":"97","id":"33c0eea8-3578-4596-aef8-e1ea9c0f57f3","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"955e92df-56ee-44b0-81a9-8241006b1e20","keyword":"电子束","originalKeyword":"电子束"},{"id":"685c5a22-d4cb-4f56-a6bd-eb88050095a9","keyword":"固化","originalKeyword":"固化"},{"id":"6e52e18b-786a-4f9a-86da-fb0de39710de","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"bef7e88a-a8f3-475e-8e31-dfba8b7d4799","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"clkxygy200003023","title":"电子束固化复合材料及界面","volume":"8","year":"2000"},{"abstractinfo":"强流脉冲电子束是近几十年发展起来的一种新兴的表面处理技术.在介绍电子束表面处理工艺特点的基础上,重点论述了电子束表面处理技术中表面相变强化、表面重熔、表面合金化、表面非晶化、表面薄层退火等工艺方法及最近研究进展,提出怎样扩大强流脉冲电子束应用范围是研究重点之一.","authors":[{"authorName":"赵铁钧","id":"d1c211c4-59bd-42ec-9f92-5aec8a1d7bb0","originalAuthorName":"赵铁钧"},{"authorName":"田小梅","id":"6b8c7d7e-88a3-4506-bc8e-b674f0d93025","originalAuthorName":"田小梅"},{"authorName":"高波","id":"387e58d2-e383-4f6a-96ef-f53788f2a248","originalAuthorName":"高波"},{"authorName":"涂赣峰","id":"517dfd0b-477c-4304-a168-82d47f54c146","originalAuthorName":"涂赣峰"}],"doi":"","fpage":"89","id":"c02331fa-b6ca-4374-b817-030633af98e6","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e1073dc6-c5d6-4260-88c3-e2d9e7a4b99f","keyword":"电子束","originalKeyword":"电子束"},{"id":"a243e8e3-d42b-47dd-9775-f452297a2cf6","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"3b2c5ac8-875d-4fa3-bf32-41a67953d320","keyword":"进展","originalKeyword":"进展"}],"language":"zh","publisherId":"cldb200905022","title":"电子束表面处理的研究进展","volume":"23","year":"2009"}],"totalpage":2507,"totalrecord":25065}