杨雪静
,
刘谋盛
,
杨亚玲
,
徐兴志
稀有金属
doi:10.3969/j.issn.0258-7076.2010.04.025
利用丁二酸酐对经微波预处理的玉米芯进行改性,制备了一种新型的水处理剂.研究了改性玉米芯(MC)对模拟废水中钯(Ⅱ)的动态吸附性能.实验结果表明,流速越大,初始浓度越高,吸附剂用量越少,可使吸附床的床层穿透加快,穿透时间缩短.通过Thomas模型预测,当钯(Ⅱ)的初始浓度不变,饱和吸附量随流速的增加而减少,吸附速率常数则随之增加.以0.1 mol·L-1 HCl作为解吸液,4次循环使用后的MC仍具有较好的吸附能力(90%)和回收能力(80%).
关键词:
玉米芯
,
丁二酸酐
,
钯(Ⅱ)
,
动态吸附
张会岩
,
肖睿
,
肖刚
,
宋启磊
,
潘其文
工程热物理学报
本文在流化床上对玉米芯进行了快速热解制取生物油的试验研究.首先在非催化条件下考察了温度、气体流量、床高和物料粒径对热解产物产率的影响,得到了制取生物油的最优工况.在此工况下进行了催化热解试验,研究了FCC催化剂对热解产物产率和生物油品质的影响.结果表明,最优工况下生物油产率为56.8%.同未加催化剂相比,FCC催化剂的存在使得生物油中油组分和焦炭的产率降低,不凝结气体、水分和焦的产率增加.分级冷凝系统的应用较好的实现了重油、轻油和水的分离.对催化条件下第二级冷凝器收集的生物油分析表明,其油组分的氧含量和高位热值分别为13.64%和36.7 MJ/kg,具有很好的应用前景.
关键词:
玉米芯
,
催化热解
,
生物油
,
流化床
,
分级冷凝
邢宝林
,
陈丽薇
,
张传祥
,
郭晖
,
康伟伟
,
张乐
,
赵红雨
,
张扬
材料导报
doi:10.11896/j.issn.1005-023X.2015.06.010
以玉米芯为原料,采用KOH活化法制备超级电容器用活性炭.利用低温氮气吸附及恒流充放电、循环伏安、交流阻抗等方法测定活性炭的孔结构及其用作电极材料的电化学性能.研究了脱灰对玉米芯活性炭孔结构及其电化学性能的影响.结果表明,在碱炭比3∶1、活化温度为800℃、活化时间为1h的条件下,可以制备出比表面积为2019m2/g、总孔容为1.084 cm3/g、中孔率为15.6%的高比表面积活性炭.玉米芯经脱灰处理可以显著改善其所制活性炭的孔隙发达程度和中孔分布,脱灰玉米芯活性炭的比表面积、总孔容及中孔率分别可达2311 m2/g、1.246 cm3/g和26.0%.玉米芯活性炭电极材料在3 mol/L KOH的电解液中具有良好的电化学性能,其比电容量可达253 F/g.脱灰玉米芯活性炭电极的比电容量更高(可达278 F/g),比电容提高9.9%,且内阻更小.
关键词:
玉米芯
,
活性炭
,
超级电容器
,
电化学性能
张其坤
,
康俊清
,
杨兵
,
赵雷振
,
侯昭升
,
唐波
催化学报
doi:10.1016/S1872-2067(15)61028-2
面对日益枯竭的化石能源和资源危机,科研工作者加速了对生物资源回收利用的研究.其中,作为生物资源主要成分的纤维素被证实是一种可以重新利用的原料,甚至可以作为工业产品潜在的前驱体.因此,回收利用富含纤维素的农作物副产品显得尤为重要.目前,多数纤维素资源并没有得到充分利用,例如玉米芯,全世界只有大约0.5%被利用.为了高效利用玉米芯资源,人们尝试各种分解方法将其主要成分纤维素和半纤维素转化成葡萄糖、木糖、糠醛以及酒精等.其中,最有效的策略是利用纤维素酶来分解玉米芯中的纤维素.然而,纤维素酶在实际应用过程中缺乏长久稳定性,将纤维素酶从反应体系中回收并重复利用非常困难.将纤维素酶负载到固体载体上是提高传统生物酶稳定性和可回收性的有效方法.固载纤维素酶在批生产处理和连续生产中比自由酶更具优势,可使生物酶催化剂从反应体系中分离出来变得容易和可操控.可以作为纤维素酶载体的物质有很多,例如浮石、静电纺丝的PAN纤维、纳米纤维膜、甲基丙烯酸甲酯共聚物和石墨烯等.一般来讲,任何含有表面功能基团从而提供了可以和纤维素酶形成强物理、化学作用的载体都可以采用.纳米尺寸的载体具有特殊性,一方面纳米颗粒提供了较大的比表面积从而可以拥有可观的负载能力,另一方面纳米颗粒可以轻易解决大颗粒载体应用中产生的反应底物和催化剂之间的扩散受阻问题.目前,纳米磁性颗粒已广泛用于负载蛋白质、多肽和生物酶.另外,用纳米磁性粒子作载体可方便地借助外加磁场实现生物酶催化剂的选择性分离回收,避免了传统载体所需的过滤或离心等单元操作,从而降低了生产成本,使生物酶催化技术实现连续化操作并用于规模化工业生产.本文通过水热法制备了颗粒均匀的纳米Fe3O4磁性颗粒,然后用3-氨丙基三乙氧基硅烷(KH550)化学修饰,再用戊二醛作交联剂将纤维素酶通过键合作用负载到修饰后的磁性载体上,从而高效制备了一种可磁力回收的生物酶催化剂.采用透射电镜和X射线衍射表征了磁性纳米粒子、修饰后的磁性纳米粒子以及制备的生物酶催化剂的粒径、外观形貌和品格结构,用红外光谱验证了磁性纳米颗粒上固载化纤维素酶的存在,用热重分析了固载化酶和自由酶的热稳定性,计算了制备的生物酶催化剂负载量和磁性粒子含量.对影响负载酶活性的多种因素进行了考察,合适的负载温度和pH值分别为40℃和6.0,戊二醛最佳添加浓度为2.0%,适宜的固载时间为4h.在最优负载条件下得到的固载化生物酶的活性可以保持自由酶活性的99.1%.经过15次重复使用后,固定化酶活性仍能保持91.1%.将制备的生物酶催化剂用于玉米芯分解制葡萄糖反应,预处理后的玉米芯最大分解率可达61.94%.
关键词:
磁性纳米颗粒
,
纤维素酶
,
固定化酶
,
玉米芯
,
戊二醛
周向阳
,
耿振
,
张存满
,
王达斌
,
胡振悦
功能材料
doi:10.3969/j.issn.1001-9731.2016.03.001
以生物质玉米芯为原料,采用氢氧化钾活化的方法制备了一系列具有高比表面积的活性炭.制备的样品通过热重和氮气吸脱附进行表征,并对样品进行了储氢性能测试.结果表明,碱碳比和活化温度对活性炭的比表面积和总孔容有很大影响,并且随碱碳比和活化温度的升高,活性炭中的微孔比例逐渐减小.储氢测试结果表明,碱碳比为4,活化温度为850℃时,样品的储氢性能最好(-196℃、0.1 MPa下为3.21%,4.0 MPa下为5.80%).分析活性炭储氢量与微孔孔容的关系可知,吸附氢气最有效孔径随气体压力的变化而变化.0.1 MPa下,孔径为1.5~2 nm的孔最有利于氢气吸附,而更高压力下(4.0 MPa),孔径为0.85~1.5 nm的孔型更有利于氢气吸附.
关键词:
玉米芯
,
氢氧化钾
,
活性炭
,
吸附储氢
马锋锋
,
赵保卫
环境化学
doi:10.7524/j.issn.0254-6108.2017.04.2016080701
以玉米芯为原料制备玉米芯生物炭(CCBC),探讨其对水中对硝基苯酚(PNP)的吸附特性,同时运用扫描电镜、傅里叶红外光谱、比表面积仪和元素分析对生物炭的理化性质进行表征,考察了溶液pH值和生物炭投加量对CCBC吸附PNP的影响.结果表明,在溶液pH值在2.0-11.0范围内,随着溶液pH值的升高,CCBC对PNP的吸附量持续减小,最佳溶液pH值应在2.0-7.0范围内.CCBC对PNP的吸附在4h时达到平衡,Elovich模型可以很好地拟合动力学数据,且颗粒内扩散不是唯一的控速步骤.吸附等温线符合Sips模型(R2>0.98),最大吸附量为64.11 mg·g-1.热力学结果表明,CCBC对PNP的吸附是一个自发的吸热过程.PNP在CCBC上的吸附机制包括分配作用和表面吸附作用,且以表面吸附作用为主.
关键词:
生物炭
,
玉米芯
,
吸附
,
对硝基苯酚
,
水处理
许映军
,
丁永生
,
公维民
,
陈捷
,
盛雪芹
,
于志伟
,
许晓磊
应用化学
doi:10.3969/j.issn.1000-0518.2004.05.015
以天然有机高分子玉米芯准纳米粉(QCCP)为母体,用三乙胺与环氧氯丙烷共聚产物为阳离子单体,采用H2O2-FeSO4作引发剂,制得一种新型天然有机高分子阳离子改性絮凝剂DXSL-I,确定了优化的反应条件为:2.0 g QCCP与含有0.6 g NaOH的8 mL水混合,40 ℃碱化60 min,然后加入8 mL醚化单体三乙胺基环氧丙烷(TAEP,triethylamino-epoxypropane)和体系总质量0.01%的引发剂以及0.1%的氯化钠作为抑制剂,55 ℃醚化3.5 h. 结果表明,絮凝剂DXSL-I制备中,醚化单体与QCCP的转化率为83%,用该絮凝剂处理高岭土悬浊液时,5 min内中层溶液透光率就能达到95%. 其絮凝性能达到传统絮凝剂聚丙烯酰胺的技术指标.
关键词:
玉米芯
,
天然有机高分子
,
阳离子改性