{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"稀土掺杂对电极的导电性、分解温度、析氧电位和电催化活性有较大影响.以SnCl4·5H2O,Sb2O3和La(NO3) 3·6H2O为前驱体,采用溶胶-凝胶法制备了La掺杂SnSb复合涂层Ti基电极.借助SEM,XRD和EDX等检测手段对所制备电极的表面形貌、晶体结构及元素组成进行表征和分析,考察了制备电极的析氧电位及模拟苯酚废水降解效果,优化出的最优掺杂量为Sn:Sb:La=100.0:10.0:2.5(摩尔比),最佳热处理温度为550℃;用该电极处理模拟苯酚废水150 min,COD去除率达到94.8%.结果表明:适量的La掺杂可提高SnO2晶粒的形核与长大速率之比,使SnSb复合电极表面晶粒细化,比表面积增大,有利于电极催化性能的改善,可为研制出适合于苯酚处理的高效阳极材料提供参考.","authors":[{"authorName":"张翼","id":"e1d064ae-4443-43df-a577-93ccd7757494","originalAuthorName":"张翼"},{"authorName":"新新","id":"199a15dc-5e61-46e7-86a5-a6ac31065625","originalAuthorName":"周新新"},{"authorName":"韩大匡","id":"66bfdbad-d86f-41aa-9480-54f10a50cb15","originalAuthorName":"韩大匡"},{"authorName":"朱友益","id":"e892d2d4-f905-402b-8200-09acdeb94ae4","originalAuthorName":"朱友益"},{"authorName":"马德胜","id":"8c49927a-4b9c-428b-a984-4e4e130bd363","originalAuthorName":"马德胜"}],"doi":"","fpage":"9","id":"facccac9-34a5-4edc-96ab-b252e80d1728","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"fbd75daa-037c-4048-a6da-aa5aa44e3ceb","keyword":"SnSb复合涂层","originalKeyword":"SnSb复合涂层"},{"id":"a4e9da7e-6be9-4ad7-bbce-f38d69dde71f","keyword":"钛基电极","originalKeyword":"钛基电极"},{"id":"32ee5d28-a95c-4dae-9ade-a8d49cf6496b","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"faa77511-7559-47d3-9219-7f30174020a2","keyword":"镧","originalKeyword":"镧"},{"id":"e7c7b57d-7bde-468d-8fb5-56d890560f5f","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"6b3a7f70-e401-403d-8b31-7373378b0121","keyword":"催化性能","originalKeyword":"催化性能"}],"language":"zh","publisherId":"clbh201006003","title":"稀土La掺杂SnSb复合涂层Ti基电极的制备及催化性能","volume":"43","year":"2010"},{"abstractinfo":"论述了超高疲劳研究的背景及意义,总结了近年来超高疲劳的研究成果包括超高疲劳的典型特征如S-N曲线、裂纹起源、起裂机理、影响超高疲劳行为的因素等,介绍了超高疲劳的常用实验手段,提出了今后超高疲劳研究的课题.","authors":[{"authorName":"关昕","id":"0ac19842-8b56-426f-8905-2388e7a25b47","originalAuthorName":"关昕"},{"authorName":"孟延军","id":"58d24d51-0717-4882-bcd8-6c2afb28dd18","originalAuthorName":"孟延军"}],"doi":"","fpage":"58","id":"e4637bac-c1ab-4be4-843c-0b2fc9d06e80","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"fc7ed857-e1c0-43de-9636-ad6114993fd8","keyword":"超高疲劳","originalKeyword":"超高周疲劳"},{"id":"10ad3e45-0a4e-4eb7-9a69-588ccacf882e","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"8217367e-ada6-4836-a546-fc39c08018ab","keyword":"疲劳裂纹萌生","originalKeyword":"疲劳裂纹萌生"},{"id":"6ef2ce57-4acd-4632-a6d5-c41726a86dba","keyword":"超声疲劳实验","originalKeyword":"超声疲劳实验"}],"language":"zh","publisherId":"gtyj200901018","title":"超高疲劳的研究进展","volume":"37","year":"2009"},{"abstractinfo":"研究了不同温度下TC17合金低疲劳性能和断口形貌,确定了不同温度下合金低疲劳曲线的数学表达式,分析了合金棒材低疲劳断口形貌特征.","authors":[{"authorName":"张翥","id":"08f7ef9f-76b4-43b4-a22c-5e4c97332d9c","originalAuthorName":"张翥"},{"authorName":"惠松骁","id":"95300b8b-74b1-4a44-9a99-d5da348d9ace","originalAuthorName":"惠松骁"},{"authorName":"路纲","id":"b4d1bce2-6620-453b-ab68-5919f79cf6a5","originalAuthorName":"路纲"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.079","fpage":"267","id":"5245b7d9-ad01-42aa-96ae-965e18ec3e68","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1ab386e7-9137-42ac-932c-aad72f085293","keyword":"低疲劳","originalKeyword":"低周疲劳"},{"id":"707dc835-b982-4d1a-8bac-aaf2daa1a891","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"84cd2432-b6a6-470a-93bc-ec98a918a3b5","keyword":"TC17钛合金","originalKeyword":"TC17钛合金"}],"language":"zh","publisherId":"jsxb2002z1079","title":"TC17合金低疲劳性能与低疲劳断口形貌","volume":"38","year":"2002"},{"abstractinfo":"对高疲劳和低疲劳寿命预测模型进行了研究,提出了一种能够将高疲劳和低疲劳统一表征的能量形式参量.用统一的能量形式表征参量对高温合金GH141的760℃高疲劳和低疲劳数据进行处理,得到理想的能量-寿命方程.用1Cr11Ni2W2MoV钢500℃和粉末盘材料FGH95的600℃高温低疲劳和高疲劳数据对统一表征方法进行验证,验证结果表明,用能量形式的表征参量能够得到理想的能量-寿命方程.","authors":[{"authorName":"许超","id":"b736c564-a712-4cae-ba28-e1f545e3fbee","originalAuthorName":"许超"},{"authorName":"张国栋","id":"1c3a219e-8948-44a2-ac77-d7a1db019a04","originalAuthorName":"张国栋"},{"authorName":"苏彬","id":"115a0fbf-8817-41cd-8719-b1cf173341c4","originalAuthorName":"苏彬"}],"doi":"10.3969/j.issn.1001-4381.2007.08.016","fpage":"65","id":"90ae7451-07db-49d8-bc65-8529908ec2cb","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"fa75e230-7af7-47c8-af9d-3a42d6a0957a","keyword":"高疲劳","originalKeyword":"高周疲劳"},{"id":"fff773bd-ef31-49d2-a540-5c0587429d8e","keyword":"低疲劳","originalKeyword":"低周疲劳"},{"id":"7e70aa0a-f69e-49d8-90a4-c7e78e1e84d8","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"120f5885-b123-425d-9772-e00834ea620b","keyword":"能量表征","originalKeyword":"能量表征"},{"id":"2778e939-7c24-4364-bc09-9b7d01d11edf","keyword":"高温合金","originalKeyword":"高温合金"}],"language":"zh","publisherId":"clgc200708016","title":"高疲劳和低疲劳统一的能量表征方法研究","volume":"","year":"2007"},{"abstractinfo":"分析了金属材料超高疲劳断口形貌特征,介绍了基于Paris公式的裂纹扩展寿命预测模型和基于位错理论的疲劳裂纹萌生寿命预测模型,并结合前期有关金属材料超高疲劳行为的试验数据,对2种预测模型的误差进行分析.结果表明,基于位错理论的寿命预测模型较为准确;而基于Paris公式的裂纹扩展寿命预测模型,其预测精度随着疲劳寿命的增加而降低,即材料组织缺陷萌生成为疲劳裂纹阶段占据疲劳寿命的绝大部分.在此基础上,提出了超高疲劳寿命预测的研究方向:疲劳裂纹的萌生机制,特别是裂纹源表面萌生和内部萌生的竞争性机制;建立大样本数据,结合统计学方法,以工程构件的服役安全性和可靠性为基础,精确评价超高疲劳寿命.","authors":[{"authorName":"宋亚南","id":"a3f57d8d-e363-4060-b147-c679dc69b63c","originalAuthorName":"宋亚南"},{"authorName":"徐滨士","id":"420e93bc-bf6e-4637-8f47-a160b0081bae","originalAuthorName":"徐滨士"},{"authorName":"王海斗","id":"1ae8eda4-1c15-49a9-a0ed-b1d1cf5cb8f5","originalAuthorName":"王海斗"},{"authorName":"张玉波","id":"0da25032-c90c-4137-940f-b98b99e26de9","originalAuthorName":"张玉波"},{"authorName":"邢志国","id":"ba8df743-30b2-407a-86a5-99f41317fc27","originalAuthorName":"邢志国"}],"doi":"","fpage":"1203","id":"46f40732-c34d-4b6a-a141-61b1d14d4a90","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"7079c771-b3ea-4858-b4d1-88626ec086d0","keyword":"超高疲劳","originalKeyword":"超高周疲劳"},{"id":"b9d90b52-0489-4b16-bee0-245406d58655","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"61dc2b24-54c7-4dc5-91cb-2ff12a621d81","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"024a9c21-6f1c-4eda-b6ca-94c63c6a8825","keyword":"预测误差","originalKeyword":"预测误差"}],"language":"zh","publisherId":"xyjsclygc201605020","title":"超高疲劳寿命预测方法探讨","volume":"45","year":"2016"},{"abstractinfo":"研究了铸造Ti-46.5Al-5Nb(原子分数,%)合金的高疲劳行为.结果表明:Ti-46.5Al-5Nb合金具有较好的室温高疲劳性能,其疲劳极限σ-1=510 MPa,与合金的断裂强度σb的比值为1.1.试样的形状对Ti-46.5Al-5Nb合金的室温拉伸强度影响较大,由此可以解释合金的疲劳强度与断裂强度的比值大于1.同时,用扫描电镜对合金的高疲劳断口进行了观察.","authors":[{"authorName":"崔玉友","id":"6d2f0780-4421-413f-81a5-9a1c8faf287d","originalAuthorName":"崔玉友"},{"authorName":"杨锐","id":"21b4654d-c517-41f1-928b-985f08b14dad","originalAuthorName":"杨锐"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.156","fpage":"497","id":"221aa2f4-ff60-4489-8628-d051a4e9f81f","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a0ac415a-bf8f-48df-9975-1cc4a8e17e5d","keyword":"Ti-46.5Al-5Nb合金","originalKeyword":"Ti-46.5Al-5Nb合金"},{"id":"da3c909c-c444-4c02-b29a-0fe1dd5bf4d5","keyword":"高疲劳","originalKeyword":"高周疲劳"},{"id":"a237702e-9a16-4d44-a4d9-b5aab4e1ae36","keyword":"疲劳强度","originalKeyword":"疲劳强度"}],"language":"zh","publisherId":"jsxb2002z1156","title":"γ-TiAl合金的高疲劳行为","volume":"38","year":"2002"},{"abstractinfo":"研究了缺口对TC21合金在不同温度高和低疲劳强度的影响.疲劳试样为光滑和V型缺口(Kt=3)2种试样,疲劳载荷为应力控制,循环应力比为0.1,高疲劳实验温度为315 ℃,低疲劳实验温度为室温及400℃.结果表明,在循环应力较低,缺口根部未塑性变形时,缺口使疲劳强度明显降低.循环应力升高使缺口根部产生塑性变形时,缺口对疲劳强度影响降低,当循环应力升高使光滑试样失稳时,缺口试样的疲劳强度高于光滑试样的疲劳强度.断口的SEM分析表明,缺口试样的疲劳裂纹在缺口根部萌生,即使高疲劳裂纹源也是多个.","authors":[{"authorName":"虞忠良","id":"abd87fe1-a537-4e20-88b7-1a3c2e7e3b40","originalAuthorName":"虞忠良"},{"authorName":"赵永庆","id":"f78ead44-ed40-4d1d-9204-8b1b6d7081ef","originalAuthorName":"赵永庆"},{"authorName":"廉","id":"ba405ddd-36d0-45b7-8983-0df416ab9461","originalAuthorName":"周廉"},{"authorName":"孙军","id":"8297e21f-dcea-438d-a80a-8c632bd1e6e4","originalAuthorName":"孙军"},{"authorName":"曲恒磊","id":"8a66dc34-2d0f-4090-a9a9-670102dd7230","originalAuthorName":"曲恒磊"}],"doi":"","fpage":"1523","id":"7955c589-1b59-47f4-bb9f-7d679859aaf0","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4e50aa0a-33ef-4707-9e50-160f353e558d","keyword":"TC21合金","originalKeyword":"TC21合金"},{"id":"a8face36-e694-42c1-b806-a48bce001b58","keyword":"缺口","originalKeyword":"缺口"},{"id":"357af210-c719-4951-a799-b2d1eb8c2244","keyword":"高疲劳","originalKeyword":"高周疲劳"},{"id":"d5432717-2565-4501-9190-8b125da0f26e","keyword":"低疲劳","originalKeyword":"低周疲劳"}],"language":"zh","publisherId":"xyjsclygc200709004","title":"缺口对TC21合金高和低疲劳的影响","volume":"36","year":"2007"},{"abstractinfo":"采用超声疲劳试验技术对304不锈钢超高疲劳性能进行了研究,并用扫描电镜对疲劳断口进行了分析.结果表明:304不锈钢在105~1010次范围内的S-N曲线呈阶梯型下降趋势;在106~108次出现平台,平台对应应力幅约为200 MPa;在平台应力以下,108次以上超高范围304不锈钢仍然发生疲劳断裂,不存在传统意义的疲劳强度;高和超高断裂试样的裂纹主要从试样表面萌生.","authors":[{"authorName":"张真源","id":"1e495d36-ab34-44b2-a4a5-6580018266bd","originalAuthorName":"张真源"},{"authorName":"王弘","id":"3559134c-d467-400b-9b4b-5cd0522d0fb4","originalAuthorName":"王弘"}],"doi":"10.3969/j.issn.1000-3738.2008.01.023","fpage":"79","id":"90adace5-2f7b-4536-ba84-f44523c00fd6","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"2cce6bfe-e507-4b4b-8748-bb4dd5c2d2c0","keyword":"超高疲劳","originalKeyword":"超高周疲劳"},{"id":"f83ce778-6d3a-4685-8e82-4efce41a6ed9","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"4070959a-3f57-4ace-89e9-00a024b40430","keyword":"304不锈钢","originalKeyword":"304不锈钢"}],"language":"zh","publisherId":"jxgccl200801023","title":"304不锈钢的超高疲劳性能","volume":"32","year":"2008"},{"abstractinfo":"研究了GH586合金750 ℃的低疲劳性能,并对疲劳机制进行了分析讨论.结果表明:GH586合金具有很高的抗高温低疲劳性能,疲劳裂纹产生于合金表面.","authors":[{"authorName":"焦兰英","id":"c822bfa4-9e98-44f0-8a34-c9a22d3d8151","originalAuthorName":"焦兰英"},{"authorName":"黄进峰","id":"91d158a4-77a6-497b-a5d7-7d0c96eed806","originalAuthorName":"黄进峰"},{"authorName":"赵光普","id":"d3826537-8226-4d47-9115-f232fa603d30","originalAuthorName":"赵光普"}],"doi":"","fpage":"48","id":"e122c94e-efa8-496a-a157-1716c2d88e00","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"93ff43f8-7228-4d0c-861d-74248dc5a985","keyword":"高温合金","originalKeyword":"高温合金"},{"id":"15bad842-c3c3-4888-a925-3a421a06ce71","keyword":"低疲劳","originalKeyword":"低周疲劳"},{"id":"0cc1bc00-2ba6-4d77-b808-dcd930ee104b","keyword":"断口分析","originalKeyword":"断口分析"},{"id":"d9c70251-c389-4eeb-aeb7-35b6c33bf7ef","keyword":"GH586","originalKeyword":"GH586"}],"language":"zh","publisherId":"gtyjxb200302012","title":"GH586合金的高温低疲劳特征","volume":"15","year":"2003"},{"abstractinfo":"通过常规疲劳试验和超声疲劳试验测试模具钢107次疲劳性能和108超高次疲劳性能,对模具钢超高疲劳试样断口进行了分析.将两种不同频率下模具钢试样的疲劳性能进行对比探讨模具钢的频率效应,将20 kHz频率下两种不同尺寸试样的疲劳性能进行对比探讨模具钢的尺寸效应.结果表明:20 kHz和130 Hz下模具钢1 07次的疲劳极限相差9%,不同尺寸的两种圆弧形试样108次下的疲劳极限相差16%.","authors":[{"authorName":"彭文杰","id":"54f97791-9c11-4a24-9bea-2052ee5c23b5","originalAuthorName":"彭文杰"},{"authorName":"龙会才","id":"e5280109-aa88-40ac-b65c-190caa58cf49","originalAuthorName":"龙会才"},{"authorName":"王悦","id":"25f7c415-f22f-4ebe-a181-decd93177070","originalAuthorName":"王悦"},{"authorName":"薛欢","id":"95a55b2b-06ae-4394-9054-0a2160576f37","originalAuthorName":"薛欢"},{"authorName":"葛锐","id":"9395a230-efc8-466c-ab2d-c0998f2d2fcc","originalAuthorName":"葛锐"}],"doi":"10.13228/j.b0yuan.issn1001-0777.20140057","fpage":"5","id":"0b55afe5-a4ea-486c-8874-71dd9762e4cb","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"ae21a39c-e3f8-43c2-b7cf-dfaf6168c4bc","keyword":"模具钢","originalKeyword":"模具钢"},{"id":"9de8e04a-84a3-4791-bbee-c2d5da2f665d","keyword":"超高疲劳试验","originalKeyword":"超高周疲劳试验"},{"id":"8302ef54-a3e3-4386-8e25-05b726454c56","keyword":"频率效应","originalKeyword":"频率效应"},{"id":"79d1418d-cf4c-4656-9733-51912fe556db","keyword":"尺寸效应","originalKeyword":"尺寸效应"}],"language":"zh","publisherId":"wlcs201502002","title":"模具钢超高疲劳性能探讨","volume":"33","year":"2015"}],"totalpage":151,"totalrecord":1501}