{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在0.6 MPa的纯氢气氛中,采用金属/定向凝固技术,制备得到不同Cr含量的GASAR多孔Cu-xCr合金试样(x=0,0.3%,0.5%,0.8%,1.0%,1.3%(质量分数,%)),并研究了Cr含量对多孔Cu-xCr合金气孔率和气孔平均直径的影响规律。结果表明:随Cr含量的逐渐增大,在合金熔体中的溶解度相应增加,导致多孔 Cu-xCr合金试样的气孔率缓慢增高;此外,随 Cr 含量的增加,受糊状区宽度变化的影响,气孔的平均直径呈先增大后减小的趋势。","authors":[{"authorName":"宋群玲","id":"fb476312-fb9a-4553-a164-f5e0b575e871","originalAuthorName":"宋群玲"},{"authorName":"金青林","id":"d1e97c82-8032-48b5-b26e-2455c6c89a3f","originalAuthorName":"金青林"},{"authorName":"李再久","id":"5b54d376-d937-4674-82e3-117672dd6862","originalAuthorName":"李再久"},{"authorName":"杨天武","id":"356a33d6-d5a7-430a-929f-df49abe676e7","originalAuthorName":"杨天武"},{"authorName":"周荣","id":"1951227c-e8e5-42a1-a7c6-0d9965d449b9","originalAuthorName":"周荣"}],"doi":"","fpage":"2539","id":"0f7160b7-c6e0-4940-bf44-d282a6d32e6e","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"676da3c6-bcd6-4353-9949-63c831be2367","keyword":"Cu-Cr合金","originalKeyword":"Cu-Cr合金"},{"id":"f4f393cd-4a84-4e40-9288-b797f0ddc910","keyword":"多孔金属","originalKeyword":"多孔金属"},{"id":"8b7aeb92-1b84-4cf4-a496-4b841bfd9ca9","keyword":"金属/定向凝固","originalKeyword":"金属/氢共晶定向凝固"},{"id":"f257ff89-195b-4f1d-b812-2fd112896d40","keyword":"气孔率","originalKeyword":"气孔率"},{"id":"2a6d913c-aac3-40f7-9e86-c66d17a49ff9","keyword":"糊状区","originalKeyword":"糊状区"}],"language":"zh","publisherId":"zgysjsxb201410015","title":"金属/定向凝固制备GASAR多孔Cu-Cr合金","volume":"","year":"2014"},{"abstractinfo":"通过对金属-定向凝固过程的热力学分析,建立了一个用来描述Gasar工艺中工艺参数对气孔直径及气孔间距影响的理论模型,并用该模型与相关实验数据进行比较.结果表明,理论计算结果与实验结果吻合较好.Gasar多孔Cu试样的气孔直径及气孔间距l随下拉速率v的增加而不断降低;l和v的关系为:vP=B(B是与熔体温度和H2压力有关的常数).低下拉速率下,气孔结构与模型假设理想结构的偏离,以及固/液界面附近的熔体对流,是造成理论计算值与实验值存在一定偏差的主要原因.","authors":[{"authorName":"李再久","id":"07d85056-aa38-452c-9f88-678d47878051","originalAuthorName":"李再久"},{"authorName":"金青林","id":"7b0f44f8-6f66-4cda-9330-f4ec17e5ba17","originalAuthorName":"金青林"},{"authorName":"杨天武","id":"a65fabce-5d02-486e-a34e-d6932ad003d1","originalAuthorName":"杨天武"},{"authorName":"周荣","id":"99082909-fa86-4c65-a2f6-1a2c8897e620","originalAuthorName":"周荣"},{"authorName":"蒋业华","id":"c16c56bd-21c9-40a2-971f-3f2e53db69fa","originalAuthorName":"蒋业华"}],"doi":"10.3724/SP.J.1037.2013.00606","fpage":"507","id":"abdc2c59-9a87-45f8-9d93-86cf6f73c4eb","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7705a679-c88d-4311-98fc-abc0facfe3a8","keyword":"多孔金属","originalKeyword":"多孔金属"},{"id":"5d476a32-927a-49d0-962c-45b5e952bc7d","keyword":"金属-","originalKeyword":"金属-氢共晶"},{"id":"c8c0d1f4-5fe0-4b1f-9d4e-033465a3c578","keyword":"气孔间距","originalKeyword":"气孔间距"},{"id":"1dde8240-381e-4e58-8223-b73b953a39b0","keyword":"下拉速率","originalKeyword":"下拉速率"}],"language":"zh","publisherId":"jsxb201404016","title":"金属-定向凝固热力学模型","volume":"50","year":"2014"},{"abstractinfo":"金属/气体定向凝固是一种制备规则多孔金属的新工艺.评述了该工艺的发展历程、原理和最新进展,同时介绍了由该工艺制备的规则多孔金属的结构和性能特点及其应用.","authors":[{"authorName":"李言祥","id":"ef9a972b-0e88-43ec-8ead-cc910c81b448","originalAuthorName":"李言祥"},{"authorName":"刘源","id":"35025c64-973d-4b45-9bd3-042e13847d03","originalAuthorName":"刘源"}],"doi":"","fpage":"1","id":"a3ae4c3a-bf5a-4dd9-9360-0cb3bfd977ca","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"13ea7893-c39c-47e4-9661-8ee00849c1bc","keyword":"金属/气体定向凝固","originalKeyword":"金属/气体共晶定向凝固"},{"id":"c98ab5bf-feb6-41b2-bab0-1115a727b8c5","keyword":"规则多孔金属","originalKeyword":"规则多孔金属"},{"id":"b873a54c-8596-4a11-966c-908c728f7f30","keyword":"多孔材料","originalKeyword":"多孔材料"}],"language":"zh","publisherId":"cldb200304001","title":"金属/气体定向凝固规则多孔金属的研究进展","volume":"17","year":"2003"},{"abstractinfo":"采用热传导方向为径向的金属-气体二维定向凝固方法(二维Gasar),在纯、氩混合气氛下制备了气孔沿径向规则分布的放射状多孔金属Mg.研究了放射状多孔金属结构的特点以及气体压力等工艺参数对孔隙率、孔径和气孔分布的影响.结果表明,在圆柱形试样的二维定向凝固过程中,金属-气体晶形成的体积膨胀会在凝固前沿的液相中产生大的对流,影响气孔的生长方向和规则程度,同时还会导致气体的逸出.随混合气体中氩气分压的增大,逸出程度下降;当氩气分压大于氢气分压时,气体的逸出被完全抑止.由此可以准确地预测出放射状规则多孔金属的孔隙率.","authors":[{"authorName":"王雪","id":"4e11ac5d-54a1-4c5a-8dfa-89debc462ace","originalAuthorName":"王雪"},{"authorName":"李言祥","id":"8c459042-aac7-4ae3-a6ba-cc7be3a0b677","originalAuthorName":"李言祥"},{"authorName":"刘源","id":"385c1cd4-a9f0-40b0-81ee-d8a4509f0a1f","originalAuthorName":"刘源"}],"doi":"10.3321/j.issn:0412-1961.2006.10.015","fpage":"1075","id":"b8ead33b-3e9c-458c-8635-c249dac04a8b","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"aaf2fe85-f918-4c57-8a78-9a731996ffe2","keyword":"Mg","originalKeyword":"Mg"},{"id":"9d9d6721-b2ad-4b5a-a4dc-e6669109155c","keyword":"多孔金属","originalKeyword":"多孔金属"},{"id":"87ac50e1-00c1-4535-8499-7fec7f44a451","keyword":"凝固","originalKeyword":"共晶凝固"},{"id":"d19c4904-2dbc-477a-976f-4dd6963a04af","keyword":"二维Gasar","originalKeyword":"二维Gasar"},{"id":"8ac29e88-b163-4018-95b4-70dfbfb53c97","keyword":"放射状孔结构","originalKeyword":"放射状孔结构"}],"language":"zh","publisherId":"jsxb200610015","title":"用金属/气体二维定向凝固法制备放射状规则多孔Mg","volume":"42","year":"2006"},{"abstractinfo":"本文采用Gasar工艺(金属-气体定向凝固),通过使热流径向传递,成功制备了具有二维径向气孔分布的放射状多孔金属Mg,并研究了其结构特点以及气体压力等对气孔率、气孔大小和分布的影响。","authors":[{"authorName":"王雪","id":"1791bc9b-a7cc-4c89-8bba-71af97e85b1c","originalAuthorName":"王雪"},{"authorName":"李言祥","id":"55eb85be-6c22-4c58-a033-242ee56cae51","originalAuthorName":"李言祥"},{"authorName":"刘源","id":"68f18039-0919-42d6-be4c-b6cf2c9874b7","originalAuthorName":"刘源"}],"categoryName":"|","doi":"","fpage":"1075","id":"022eb447-9949-4438-ae1b-40e6dbc5348f","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"2b895b0c-6722-4eda-bf7b-490001173f0d","keyword":"多孔金属","originalKeyword":"多孔金属"},{"id":"49fb6ec2-d99f-4deb-a45f-f85baad3fbac","keyword":"Eutectic solidification","originalKeyword":"Eutectic solidification"}],"language":"zh","publisherId":"0412-1961_2006_10_20","title":"用金属/气体二维定向凝固法制备放射状规则多孔Mg","volume":"42","year":"2006"},{"abstractinfo":"采用金属/气体二维定向凝固法制备了放射状规则多孔金属Mg.通过建模分析了放射状规则多孔金属气孔分布(孔间距、孔径和孔数)的变化趋势,并论证了模型的合理性.从理论和实验两方面研究了凝固过程中气孔的中断、合并和新形核对各结构参数的影响.","authors":[{"authorName":"王雪","id":"e094ba83-1a3b-42d1-bb60-c9b20f641498","originalAuthorName":"王雪"},{"authorName":"李言祥","id":"33e2d559-3bac-424c-a3e2-88b468193f3a","originalAuthorName":"李言祥"},{"authorName":"刘源","id":"b0400046-1aad-47a2-9df3-7ac611f54767","originalAuthorName":"刘源"}],"doi":"10.3321/j.issn:0412-1961.2007.01.002","fpage":"6","id":"8890d788-c598-42c3-a7d0-b469b0e2d6fb","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"dca889df-a7bd-496c-ad89-4f048c19a440","keyword":"多孔金属","originalKeyword":"多孔金属"},{"id":"e6152786-fb0c-410e-8a00-fbe084a533bf","keyword":"金属/气体","originalKeyword":"金属/气体共晶"},{"id":"ada85687-5cae-4c2c-b1bb-67a40819e3d7","keyword":"放射状多孔结构","originalKeyword":"放射状多孔结构"},{"id":"22268f15-369e-4323-9d39-93ca6c80ace8","keyword":"二维定向凝固","originalKeyword":"二维定向凝固"}],"language":"zh","publisherId":"jsxb200701002","title":"金属/气体二维定向凝固放射状多孔Mg的结构特征","volume":"43","year":"2007"},{"abstractinfo":"气体压力和熔体过热度决定熔体中气体溶解量从而直接影响多孔试样的气孔率.通过理论分析建立了固/气定向凝固中气体逸出和藕状多孔结构形成所需的过热度和气体压力判据.以金属/为例,计算结果表明,过热度和氩气分压均应有一适中的范围:给定氢气和氩气分压时,过热度应高于藕孔形成临界过热度而低于氢气逸出临界过热度;给定过热度和氢气分压时,氩气分压应高于氢气逸出临界氩气分压而低于藕孔形成临界氩气分压.该分析结果从藕状多孔Mg的实验结果得到了验证,可以作为高质量规则多孔材料实际制备过程的工艺参数指导原则.","authors":[{"authorName":"张华伟","id":"e2fef8d8-16de-4c73-80b3-0f7fa7925853","originalAuthorName":"张华伟"},{"authorName":"李言祥","id":"af13111b-826a-44bc-94dc-1a05f44bdef2","originalAuthorName":"李言祥"},{"authorName":"刘源","id":"bcc3fbc1-56d1-4ded-87ec-3f173f605452","originalAuthorName":"刘源"}],"doi":"10.3321/j.issn:0412-1961.2007.06.007","fpage":"589","id":"9258cb4d-4762-4807-bdcc-b2867e1575b7","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3a05f553-956a-4dbd-902b-7fcd5c66d165","keyword":"多孔金属","originalKeyword":"多孔金属"},{"id":"531ede02-3d13-4ea6-a8e4-5544e6dc590c","keyword":"固/气","originalKeyword":"固/气共晶"},{"id":"b0f9ac5e-c4b4-4d42-8821-e38a78cd5cb0","keyword":"定向凝固","originalKeyword":"定向凝固"},{"id":"2ca241f3-cfeb-48bd-969a-9f3bc4a47a35","keyword":"气体逸出","originalKeyword":"气体逸出"},{"id":"da8ab7ee-ae84-43d5-9389-a7c0e6c20fcf","keyword":"藕状结构","originalKeyword":"藕状结构"},{"id":"4776dddf-a508-40d3-ad9a-bb4687ce922e","keyword":"Gasar","originalKeyword":"Gasar"}],"language":"zh","publisherId":"jsxb200706007","title":"固/气定向凝固中的工艺判据","volume":"43","year":"2007"},{"abstractinfo":"本文评述了定向凝固多相复合陶瓷的制备方法, 并介绍了定向凝固 Al/ Y A G 复合材料优异的高温强度、热稳定性以及抗蠕变性断裂强度达350 ~400 M Pa , 且从室温到2073 K 基本不变; 在1923 K 以上拉伸试验, 显示出由位错运动引发的塑性形变; 且观察到类似于金属的屈服现象这种复合材料经1973 K/1000h 空气中热处理后的显微结构也十分稳定有望成为21 世纪新的耐热结构材料","authors":[{"authorName":"潘振甦","id":"da4f068a-8a68-4dbf-904d-f4bc27d7bddf","originalAuthorName":"潘振甦"},{"authorName":"张惠丰","id":"590f12df-5d49-487d-9fb4-80c0afe29a0d","originalAuthorName":"张惠丰"},{"authorName":"郭景坤","id":"bddf89f8-b61a-49dd-bc7a-17d87d5a7c34","originalAuthorName":"郭景坤"}],"categoryName":"|","doi":"","fpage":"513","id":"66182457-a92a-44d4-b508-106c5bd09147","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"7252603c-0c54-4da3-8e41-97d964fd193c","keyword":"定向凝固","originalKeyword":"定向凝固"},{"id":"12b1d241-2f07-4eb9-b7b9-5aacb1939ad9","keyword":"null","originalKeyword":"null"},{"id":"3598cc25-350f-44ad-99b6-109b1984b700","keyword":"null","originalKeyword":"null"},{"id":"c97740df-3bf5-4b4e-93f8-915df43eed8b","keyword":"null","originalKeyword":"null"},{"id":"2666e3a8-7c1e-41cb-a1c4-d98c6c16f016","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1999_4_19","title":"定向凝固多相复合陶瓷的研究现状","volume":"14","year":"1999"},{"abstractinfo":"采用实时观测装置和定向凝固系统研究了SCN-Cam(Succinonitrile-wt%Camphor,wt%为质量分数)模型合金的凝固过程.实验结果表明,SCN-23.6%Cam合金在常规条件下形成规则的组织,间距随界面推移速度的增大而减小;加入超声振动时,合金生长出初生相;SCN-21%Cam亚合金在超声条件下凝固时界面上形成无初生相的组织;改变超声功率,SCN-21%Cam合金所形成的间距随着超声功率的增大而逐渐增大.","authors":[{"authorName":"段萌萌","id":"9526b697-5ab5-4a7e-bf4a-264ab64da946","originalAuthorName":"段萌萌"},{"authorName":"陈长乐","id":"fa09d1b1-c510-4592-91f6-724785c2665a","originalAuthorName":"陈长乐"}],"doi":"","fpage":"252","id":"06af409f-f9d0-4795-8a35-281245ca8585","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"be157a10-8aef-4ee2-8f7b-714daa4101d2","keyword":"","originalKeyword":"共晶"},{"id":"75b8babf-e725-4bd4-99e7-d59510f18a54","keyword":"定向凝固","originalKeyword":"定向凝固"},{"id":"64588e8f-acb9-4f91-8c32-1c7421eed136","keyword":"超声振动","originalKeyword":"超声振动"},{"id":"fca2cecc-baf5-4cc6-aa67-3e2230402168","keyword":"声流效应","originalKeyword":"声流效应"}],"language":"zh","publisherId":"gncl201102016","title":"SCN-Cam合金的定向凝固研究","volume":"42","year":"2011"},{"abstractinfo":"依据定向凝固技术原理,自行开发出可控凝固平台,并利用该平台对SAC305钎料合金的凝固行为进行研究,分析定向凝固条件对SAC305钎料合金显微组织的影响.在快速冷却条件下,显微组织富锡相有明显定向生长,增大冷却速率可使柱状富锡相连续性增强,并有抑制二次枝生长的趋势.快速冷却使金属间化合物尺寸明显减小,弥散分布,达到提高钎料显微硬度的目的.","authors":[{"authorName":"左勇","id":"f6a53d39-25ee-4b1c-8976-edba06dc0b22","originalAuthorName":"左勇"},{"authorName":"马立民","id":"8e58a21e-4c34-4b03-a0ad-74249e1a1daa","originalAuthorName":"马立民"},{"authorName":"徐广臣","id":"b83692c6-ca99-47d9-90a5-295c47b16427","originalAuthorName":"徐广臣"},{"authorName":"郭福","id":"1489cb3d-36d9-4e54-ad69-f8cb6c3afe5f","originalAuthorName":"郭福"}],"doi":"","fpage":"1048","id":"4831e6ca-227d-4201-bbd6-2b9ed977fcee","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"94f427fe-cca2-4d55-968f-074539b8c50c","keyword":"SnAgCu","originalKeyword":"SnAgCu"},{"id":"11bef0bd-f488-4957-9d0a-c1d9d0ec43c5","keyword":"凝固","originalKeyword":"凝固"},{"id":"0a6f9adb-e1ee-48f3-a9c1-456460386be5","keyword":"热传导","originalKeyword":"热传导"},{"id":"4514aed8-d194-4e29-bed9-e9c8b166b2c2","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"xyjsclygc201305035","title":"SnAgCu钎料合金定向凝固研究","volume":"42","year":"2013"}],"totalpage":5485,"totalrecord":54848}