杨茉
,
黄夫泉
,
章立新
,
赵明
工程热物理学报
采用SIMPLE算法,QUICK差分方案,对封闭方腔内水平板自然对流换热进行了数值模拟.数值结果显示,低Ra数时流动和换热处于稳态,当Rayleigh数超过某一临界值时,流动和换热就会发生非稳态振荡,此时流动和换热表现出非对称性.对不同Rayleigh数,流动和换热通过单周期分岔从稳态过渡到非稳态,并通过倍周期分岔过渡到混沌.在混沌区,仍然会出现周期性窗口,并且数值结果与初始条件有关.
关键词:
自然对流
,
数值模拟
,
非线性特性
,
分岔
,
混沌
高后秀
,
张贵杰
,
马军海
,
杨渝钦
材料热处理学报
doi:10.3969/j.issn.1009-6264.2002.02.008
"类流态"是固态合金中存在的一种非线性振荡现象,在某些微区表现出明显的流动特性.根据非线性动力学的无标度理论,固体类流态"胞"区的天然破裂过程与地壳板块岩石的破裂过程在物理机制和表现形式上具有相似性.通过对固体"类流态"图像灰度值的时间序列进行分析,分别用Lyapunov指数和相位随机化方法判定了其混沌特性.研究表明固体"类流态"现象呈现出明显的非线性动力学特征,这一研究也为非线性和复杂性研究提供了以材料物理试验为内涵的范例.
关键词:
类流态
,
实测时序
,
混沌
,
相位随机化
,
Lyapunov指数
战乃岩
,
杨茉
工程热物理学报
采用SIMPLE算法,QUICK差分格式,对底部加热三维长方体腔内空气的自然对流进行了数值模拟。根据模拟结果,探讨了方腔内流体流动与换热的静态分岔与振荡等非线性现象。数值结果显示,在固定的几何尺寸和不同Ra的情况下,当初始场不同时,会出现若干不同的解,即存在解的静态分岔;在固定的几何尺寸和相同的初始场情况下,低Ra时流动和换热处于稳态,当Ra超过某一临界值时,流动和换热就会随时间振荡,并通过倍周期分岔过渡到混沌;当方腔的几何尺寸不同时,分岔点的特征值Ra也发生变化。
关键词:
自然对流
,
数值模拟
,
非线性特性
,
分岔
,
混沌
李宋
,
吴文权
,
程云章
工程热物理学报
克服瞬时浓度场测量的困难,利用自行研制的瞬时浓度场激光图像测量系统,对绕圆柱不稳定两相流动进行实验测量,获得了浓度场时间序列,并发展了一种浓度场信息熵计算方法,得到了浓度场信息熵时间序列,最后对这些时间序列进行了关联维数(系统复杂度的估计)、Kolmogorov熵(动力系统的混沌水平)和Lyapunov指数(系统稳定性的特征指数)等非线性分析.结果表明,测量获得的浓度场时间序列和浓度场信息熵时间序列都存在奇异吸引子,流动是不稳定的,进入混沌.对这些实验定量测量结果进行的非线性分析,是继本课题组以往采用数值仿真研究不稳定性之后的又一个重要结果,两者都验证了绕圆柱流动旋涡场的不稳定性,进入混沌.
关键词:
不稳定
,
浓度场
,
非线性
,
混沌
,
实验研究
刘伟钢
,
曾道先
钢铁
技术引进对一个国家技术和经济的发展起着重要的作用.世界各国都十分重视技术引进理论的探讨和研究,寻找其内在规律,减少失误,以获得最佳的经济效益.目前,对这一理论的研究正在进一步深化.一方面向理论的深度和广度进行;另一方面则向实用化方向发展.本文应用混沌理论对冶金技术引进的生命周期进行了分析,并对冶金优化配料技术引进的实例进行了验证.研究结果表明,上述研究方法既有理论意义又有实用价值,不仅对冶金系统,而且对其他行业的技术引进工作也具有指导作用.
关键词:
冶金
,
技术引进
,
混沌
,
决策
曹彪
,
吕小青
,
曾敏
,
黄石生
材料科学与工艺
doi:10.3969/j.issn.1005-0299.2007.03.002
为了更好地理解短路过渡气体保护电弧焊的不稳定性,尝试用混沌理论研究这一现象.介绍了A.Wolf理论和相空间重构理论,论述了用于选择重构参数的改进虚假邻近点法和重构信号强度法.利用这些相关的混沌理论及算法,对较稳定和不稳定的两组电流波形数据的最大Lyapunov指数(LE)进行了计算与分析.结果表明:短路过渡电弧是一个复杂的混沌过程,且随着电弧的不稳定性增加,该过程的混沌性增加;最大LE可用于表征短路过渡电弧的稳定性.
关键词:
混沌
,
Lyapunov指数
,
短路过渡电弧
,
稳定性
张志强
,
胡宇达
复合材料学报
研究了热环境中功能梯度圆板在横向简谐激励作用下的非线性动力响应和动应力问题。针对陶瓷-金属功能梯度圆板,考虑几何非线性、材料物理性质参数随温度变化及材料组分沿厚度方向按幂律分布的情况,应用虚功原理给出了热载荷与横向简谐载荷共同作用下的非线性振动偏微分方程。在固支无滑动的边界条件下,利用伽辽金法得到了达芬型非线性强迫振动方程。通过数值算例,给出了关于体积分数指数的分岔图,相图、Poincare映射等响应图以及动应力变化规律图,讨论了材料体积分数指数和温度场对功能梯度圆板非线性动力响应的影响。结果表明:热环境中功能梯度圆板随体积分数指数的变化可使系统出现周期响应、倍周期响应和混沌响应。功能梯度圆板中心处动应力在系统发生分岔或出现混沌响应时出现大幅变化,而且在混沌响应时具有不可预测性。
关键词:
功能梯度材料
,
圆板
,
动力响应
,
混沌
,
动应力
张英杰
,
颜云辉
,
李永强
,
李锋
金属学报
doi:10.3724/SP.J.1037.2012.00235
基于经典叠层板理论和几何大变形理论,研究了四边固支A1质蜂窝夹芯板的非线性动力学问题.在考虑横向阻尼的影响下,利用Hamilton变分原理建立了蜂窝夹芯板受横向激振力作用时的受迫振动微分方程,通过振型正交化将蜂窝夹芯板的受迫振动微分方程简化为双模态下的动力学控制方程,同时利用Runge-Kutta法数值模拟了系统的非线性动力学行为.结果表明:由于芯层六角形胞元结构的影响,使得蜂窝夹芯板的振动对横向激振力幅值的变化非常敏感;第一阶模态下的最大振幅总要大于第二阶模态下的最大振幅,横向激振力幅值在不同的取值范围时,蜂窝夹芯板存在不同性质的动力学现象,在横向激振力幅值较小阶段,系统总是呈现单倍周期运动.当横向激振力幅值增加到一定数值时,系统呈现出从周期运动向倍周期及混沌等复杂运动形式的转换.通过相应的弯曲振动响应实验,对数值分析结果进行了实验验证.
关键词:
蜂窝夹芯板
,
受迫振动
,
非线性动力学
,
混沌