{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"合成了低聚季铵盐表面活性剂. 以此为模板剂,在中性条件下合成出结构高度有序的介孔SiO2材料MCM-41. 考察了表面活性剂与硅酸盐的比例对产物结构与表面性质的影响. XRD结果表明,随着表面活性剂与硅酸盐比例的增加,介孔材料孔道有序性增加. 表面活性剂与硅酸盐摩尔比例大于1∶ 35时可以得到高度有序的MCM-41材料,其中n(surf)∶ n(Si)=1∶ 8时,产物的有序性最高. 表面活性剂与硅酸盐的比例对晶胞参数(a0)没有显著影响,a0值在4.30~4.43 nm之间. N2吸附实验表明,随着表面活性剂与硅酸盐比例的增加,产物的BET表面积、孔体积随之增加. 在n(surf)∶ n(Si)=1∶ 35时,吸附等温线类型由Ⅱ型向Ⅳ型转化. 表面活性剂与硅酸盐的比例对最可几孔径和孔壁厚度均没有显著影响,二者分别在3.74~3.76 nm和0.54~0.69 nm之间.","authors":[{"authorName":"闫欣","id":"66df5e4e-f3c5-4140-a35d-dfadb63738ed","originalAuthorName":"闫欣"},{"authorName":"韩书华","id":"341b8fa3-c07f-40cf-9bfa-ef434bda2633","originalAuthorName":"韩书华"},{"authorName":"侯万国","id":"b3b05ef9-9eba-4106-8dc5-792ee254f8cb","originalAuthorName":"侯万国"},{"authorName":"党文修","id":"1c7e6995-25ff-42e0-acfb-2045c9f13a9b","originalAuthorName":"党文修"},{"authorName":"许军","id":"b7375128-399f-4d0b-8bc4-ba74b8a07f06","originalAuthorName":"许军"},{"authorName":"于小娟","id":"4fe7511b-c17a-4054-bd4f-e40fce8fb1a4","originalAuthorName":"于小娟"}],"doi":"10.3969/j.issn.1000-0518.2004.09.017","fpage":"946","id":"d2c6819d-b0cd-4582-aca3-007006c4742a","issue":"9","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"9267e540-cf88-4c2a-9f5e-5a54b5c8f227","keyword":"介孔SiO2","originalKeyword":"介孔SiO2"},{"id":"40cf6a85-b11e-420b-add7-916948b456d0","keyword":"六方结构","originalKeyword":"六方结构"},{"id":"1018550a-a544-41aa-8b09-df102d3f6b5b","keyword":"模板法","originalKeyword":"模板法"},{"id":"45897941-5d59-4262-bc9f-9ed86e320569","keyword":"低聚表面活性剂","originalKeyword":"低聚表面活性剂"}],"language":"zh","publisherId":"yyhx200409017","title":"模板法合成六方介孔SiO2","volume":"21","year":"2004"},{"abstractinfo":"以十六烷基三甲基氯化铵(CTAC)为模板剂,正硅酸乙酯(TEOS)为硅源,甲醇为共溶剂,氢氧化钠为催化剂,采用水热法制备出不同粒径、单一分散、高度有序的介孔SiO2微球,并利用扫描电子显微镜(SEM)对所制备的微球进行表征.考察了体系中CTAC浓度、TEOS浓度、甲醇的比率和温度等条件对所制备的SiO2微球的粒径及分散性的影响.同时采用XRD、BET、HRTEM等手段对样品进行分析表征.结果表明合成的单分散球形SiO2具有有序的六方相介孔结构,并且具有较高的比表面积.","authors":[{"authorName":"王丽","id":"5ae2821e-6a44-47b6-a92c-25d65fefc73b","originalAuthorName":"王丽"},{"authorName":"王铎","id":"1a5457f3-d307-4d09-aa36-665e93b32abe","originalAuthorName":"王铎"},{"authorName":"朱桂茹","id":"83cfd6eb-2013-429f-9615-70d9de038c1f","originalAuthorName":"朱桂茹"},{"authorName":"高从堦","id":"11e39994-aa18-40e3-83fb-d1c43991146f","originalAuthorName":"高从堦"}],"doi":"","fpage":"822","id":"821ac92c-04cb-49d1-8102-09cbb5ae3a80","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e31e0cf5-f5d9-48f5-a257-9fa4c3e33263","keyword":"单分散","originalKeyword":"单分散"},{"id":"85738efd-f12e-43c4-ae85-b7d638dc7d59","keyword":"球形颗粒","originalKeyword":"球形颗粒"},{"id":"2ca287ce-d653-44d0-93c0-889a74135dca","keyword":"介孔SiO2","originalKeyword":"介孔SiO2"},{"id":"553452d4-a411-4c51-a6a9-3fd9e4ca2b27","keyword":"十六烷基三甲基氯化铵","originalKeyword":"十六烷基三甲基氯化铵"}],"language":"zh","publisherId":"gncl201005023","title":"单分散球形介孔SiO2的合成与表征","volume":"41","year":"2010"},{"abstractinfo":"本文在硫酸介质中,采用溶胶-凝胶法制备多孔吸附剂介孔SiO2,通过透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N2吸附-脱附对SiO2的结构进行分析,用动态水蒸气吸附分析仪研究SiO2对水蒸气的吸附和再生温度.结果表明制备的SiO2比表面积为607.3 m2·g-1,平均孔径为4.3 nm,在极低(≤10%)和高相对湿度下对水蒸气具有高的吸附量,360 K即可再生,再生性能好.","authors":[{"authorName":"赵靖华","id":"15bf20d4-3c3d-4716-b244-66edd59e3fad","originalAuthorName":"赵靖华"},{"authorName":"魏小兰","id":"f67c89dd-b294-4ac0-91a5-e9f59ee94fb4","originalAuthorName":"魏小兰"},{"authorName":"付珍","id":"c0f3ff13-c992-47fd-a94c-0ecece5f7482","originalAuthorName":"付珍"},{"authorName":"丁静","id":"0b932c5a-b232-450f-9154-1d91e84c15a8","originalAuthorName":"丁静"},{"authorName":"蒋赣","id":"444d2c61-67ed-4b4c-a17e-62678005da6b","originalAuthorName":"蒋赣"},{"authorName":"杨建平","id":"843af28f-ac5e-461b-9882-a9e4d31dc385","originalAuthorName":"杨建平"}],"doi":"","fpage":"160","id":"a202643a-687a-4e7d-b33e-b563983a02a5","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"768c9027-fd69-4539-9ff7-6a5db1680787","keyword":"介孔SiO2","originalKeyword":"介孔SiO2"},{"id":"ea474147-825a-4f01-851f-edaf2d063e4a","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"fe3ff9a3-a3f4-425d-8edc-7a25b9d3add6","keyword":"吸附等温线","originalKeyword":"吸附等温线"}],"language":"zh","publisherId":"gcrwlxb201301040","title":"介孔SiO2的合成及其吸湿性能研究","volume":"34","year":"2013"},{"abstractinfo":"以稻壳SiO2为原料,非离子表面活性剂TX-100为模板,制备了介孔SiO2(MSU-2)及其负载SO2-4/ZrO2固体超强酸催化剂.以乙酸和正丁醇的酯化反应为探针,研究了载体类型、ZrO2的负载量、催化剂用量和反应时间对催化剂性能的影响.结果发现,当SO2-4/ZrO2的负载量在10wt%以上时,催化剂具有超强酸性;SO2-4/ZrO2负载量为20wt%时,催化剂(SO2-4/ZrO2/MS-60)具有最优的催化酯化反应活性.","authors":[{"authorName":"王卫星","id":"15b7b762-4fb9-4113-bd63-ac63ea8321a0","originalAuthorName":"王卫星"},{"authorName":"曾幸荣","id":"b078b5cb-76d6-4b6a-a717-90d4154fa0eb","originalAuthorName":"曾幸荣"},{"authorName":"刘安华","id":"d78c1c25-65f1-4ad3-bc6a-a8358e9ce003","originalAuthorName":"刘安华"},{"authorName":"龚克成","id":"eeb5e6da-807d-4023-922b-b1fb8b2c43f4","originalAuthorName":"龚克成"}],"doi":"10.3969/j.issn.1671-5381.2006.03.005","fpage":"16","id":"329cf879-613e-4bcf-8c06-765b1b561245","issue":"3","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"270d1a78-8caa-4ca5-9ff8-3cd0f1b01854","keyword":"介孔SiO2","originalKeyword":"介孔SiO2"},{"id":"3ef05b56-2908-4e84-bbf4-2494a9ffbeed","keyword":"稻壳SiO2","originalKeyword":"稻壳SiO2"},{"id":"c0d00bdd-ec26-4ba4-9446-65e9fb3306bb","keyword":"非离子表面活性剂","originalKeyword":"非离子表面活性剂"},{"id":"38b74665-e717-4cbe-99f0-4074d9cc2e3c","keyword":"SO2-4/ZrO2","originalKeyword":"SO2-4/ZrO2"},{"id":"07f36bfd-f7df-4813-aeb8-78deb34ce20e","keyword":"乙酸丁酯","originalKeyword":"乙酸丁酯"}],"language":"zh","publisherId":"hccllhyyy200603005","title":"介孔SiO2负载SO2-4/ZrO2固体超强酸催化剂的制备及其酯化催化活性研究","volume":"35","year":"2006"},{"abstractinfo":"综述了SiO2基药物可控释放材料,分析了简单、掺杂、杂化SiO2药物可控释放凝胶,以及介孔SiO2药物可控释放材料的特点,讨论了水和前驱物的比例、催化剂、掺杂剂、凝胶前驱物的种类、凝胶比表面积与孔径、凝胶尺寸及药物负载量、以及药物与凝胶基质及掺杂剂之间的相互作用对可控释放的影响.对于SiO2基药物可控释放材料来说,基质溶胀和基质溶解对药物可控释放的影响不大,药物扩散是释放的主要机制.基于介孔SiO2的pH敏感和光敏开关效应,为SiO2基药物可控释放材料提供了新思路.","authors":[{"authorName":"蒋燕","id":"5c78b86c-0905-423c-96cf-2fe11d869121","originalAuthorName":"蒋燕"},{"authorName":"向虹","id":"eec930af-72de-4f93-9889-1308b86c5423","originalAuthorName":"向虹"},{"authorName":"游来江","id":"dbc5ed71-d508-44e8-94df-92fa93d40c57","originalAuthorName":"游来江"},{"authorName":"吴志坚","id":"333701f3-be08-48a3-8241-510958fdb25f","originalAuthorName":"吴志坚"}],"doi":"","fpage":"50","id":"fa4e5ec3-7db0-467b-983e-8bec392866fd","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4b0307a0-d525-4fa2-9ead-1d7174364f1a","keyword":"SiO2凝胶","originalKeyword":"SiO2凝胶"},{"id":"786fe82c-94d1-490e-a604-e1d1c2768f74","keyword":"介孔SiO2","originalKeyword":"介孔SiO2"},{"id":"05e6f4b3-4009-4132-aa32-b9cf85cb6cb3","keyword":"药物","originalKeyword":"药物"},{"id":"d81a233d-575a-4a59-8e78-5ca8eb0c98df","keyword":"可控释放","originalKeyword":"可控释放"},{"id":"e34d6cb4-0a8a-4a25-99f9-995963d4dcb0","keyword":"扩散","originalKeyword":"扩散"},{"id":"e189c42f-6162-4642-a0e3-3e10014114f3","keyword":"开关效应","originalKeyword":"开关效应"}],"language":"zh","publisherId":"cldb200601013","title":"SiO2基药物可控释放材料","volume":"20","year":"2006"},{"abstractinfo":"以机械球磨法制备具有可逆吸放氢性能的NaAlH4-Tm2O3储氢材料体系.利用相同制备方法进一步研究两种不同孔道材料(大孔Al2O3与介孔SiO2)对NaAlH4-Tm2O3体系储氢性能的影响,测试样品的循环吸放氢性能,并对样品吸放氢前后的结构进行表征.结果表明:大孔Al2O3材料的添加并不能明显改善NaAlH4-Tm2O3体系的放氢速率和放氢量,而介孔SiO2的加入使NaAlH4-Tm2O3体系在150℃条件下5h内的首次放氢量(质量分数)达到4.61%,高于NaAlH4-Tm2O3体系的4.27%,增加了约8.0%.此外,添加介孔SiO2的NaAlH4-Tm2O3体系放氢速率也有所提高.","authors":[{"authorName":"马俊","id":"4e4b4420-7b93-4b14-918d-181f002ee216","originalAuthorName":"马俊"},{"authorName":"李洁","id":"d76289a3-72ea-4895-a2bf-724e7d86013e","originalAuthorName":"李洁"},{"authorName":"唐仁英","id":"aebaeabd-7258-47b3-91c0-f81125adde34","originalAuthorName":"唐仁英"},{"authorName":"李文章","id":"cd0f7883-ff0f-493e-bc2d-f8fb2bc07d9c","originalAuthorName":"李文章"},{"authorName":"陈启元","id":"f5a2baa8-8020-417d-b86e-7e8547a6fd57","originalAuthorName":"陈启元"}],"doi":"","fpage":"1659","id":"8e4c9f6c-fbef-4d57-a39c-4ea05701ba5e","issue":"6","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"c599924d-e50e-47cc-8bfb-8167a47252bf","keyword":"NaAlH4","originalKeyword":"NaAlH4"},{"id":"d1686aef-44a6-482d-9b23-3e5107ac67a3","keyword":"Tm2O3","originalKeyword":"Tm2O3"},{"id":"079ac219-e727-48dc-bf68-aaac12a1aede","keyword":"大孔Al2O3","originalKeyword":"大孔Al2O3"},{"id":"be9562e7-25e0-4627-aa00-7f94db6ea2db","keyword":"介孔SiO2","originalKeyword":"介孔SiO2"}],"language":"zh","publisherId":"zgysjsxb201206016","title":"孔道Al2O3/SiO2对NaAlH4-Tm2O3体系储氢性能的影响","volume":"22","year":"2012"},{"abstractinfo":"以正硅酸乙酯(TEOS)为硅源,十六烷基三甲基溴化铵(CTAB)为模板剂,采用溶胶-凝胶法制备了具有双介孔独立分布的SiO2,并用FT-IR、HRTEM、BET等方法对SiO2进行了表征.结果表明,双介孔SiO2中存在大量无序排列的2~3nm的小介孔和18nm左右的大介孔,具有高比表面积(716.4~968.6m2/g)和大孔(1.03~1.63mL/g):通过改变氨水及模板剂的用量可以实现对孔分布的调控.","authors":[{"authorName":"张晓芳","id":"0ede1fb2-1060-4e3c-80c8-6093a3b43f1f","originalAuthorName":"张晓芳"},{"authorName":"郭翠梨","id":"f6347140-4123-4696-843b-00196b59ff81","originalAuthorName":"郭翠梨"},{"authorName":"王小丽","id":"7f501920-f46e-42e5-a67d-47842ff8b0d5","originalAuthorName":"王小丽"},{"authorName":"张金利","id":"0b5a4e4a-ee6e-47a3-b143-d9c2ec00aeae","originalAuthorName":"张金利"}],"doi":"","fpage":"92","id":"b65bb6fd-2536-4bb0-9229-8304739e1f71","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"014d2769-37e1-454e-9510-0cf427bf4bbc","keyword":"双介孔SiO2","originalKeyword":"双介孔SiO2"},{"id":"efb3b97f-a580-4ec1-872c-838a32a58763","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"0d881e9d-9794-4dfe-bec6-71483958ddc2","keyword":"模板剂","originalKeyword":"模板剂"}],"language":"zh","publisherId":"cldb201122025","title":"双介孔SiO2的制备及表征","volume":"25","year":"2011"},{"abstractinfo":"SiO2介孔薄膜具有优良的绝热性能,在热学、光学、微电子等领域有广阔的应用前景,其介孔结构对降低薄膜的热导率有着十分重要的作用,对介孔薄膜热导率的计算模型及测量方法的研究仍在不断探索中.对SiO2介孔膜的隔热机理进行了概述,从理论方面综述了对热导率研究的一些基本方法,并对薄膜热传导的尺寸效应作了说明.","authors":[{"authorName":"李凌智","id":"4850d034-a547-4930-8608-17567fbc44e4","originalAuthorName":"李凌智"},{"authorName":"张敏","id":"a7e01bed-1bcb-44d9-ac41-3b39fd998b11","originalAuthorName":"张敏"},{"authorName":"张瑾","id":"fabebad7-4430-427e-87f5-40f5aa5f319e","originalAuthorName":"张瑾"},{"authorName":"柳清菊","id":"02318204-2f1b-4222-ae67-b8e8a8fa507d","originalAuthorName":"柳清菊"}],"doi":"","fpage":"927","id":"d3242a4c-20a7-4c9f-8698-c0c0c0b7629e","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b60329fd-5f45-41a0-8368-28be55ca0bd0","keyword":"SiO2介孔薄膜","originalKeyword":"SiO2介孔薄膜"},{"id":"2138209f-a5c8-45da-92d8-ba009049245e","keyword":"隔热","originalKeyword":"隔热"},{"id":"e545536e-756d-4787-80fe-6f72036e05ac","keyword":"微尺度传热","originalKeyword":"微尺度传热"},{"id":"c7f475e6-86a5-4bbc-a2fd-eede40aa3c60","keyword":"热导率","originalKeyword":"热导率"}],"language":"zh","publisherId":"gncl201006001","title":"SiO2介孔薄膜材料的隔热理论","volume":"41","year":"2010"},{"abstractinfo":"以富含大孔或大介孔结构的硅胶为原料,在其上通过原位晶化合成具有小介孔-大介孔双孔分布的复合SiO2,并利用N2吸附-脱附、X射线衍射、扫描电镜、透射电子显微镜等手段对SiO2的物化性能和孔分布进行了表征.结果表明,所制备的样品具有双孔分布,孔径分别在3和45nm左右;小介孔的孔结构与MCM-41介孔类似,负载于硅胶表面及大孔孔壁上;大介孔的孔径较硅胶孔径有所减小,但未被完全填充堵塞.通过改变TEOS/大孔硅胶及CTAB/TEOS的配比可以实现对双介孔SiO2孔分布的调控.","authors":[{"authorName":"郭翠梨","id":"4645bf86-bde0-4b0b-9532-e5ea5cf89a1b","originalAuthorName":"郭翠梨"},{"authorName":"王小丽","id":"4e1e640c-367d-4e37-8de5-814390f571a7","originalAuthorName":"王小丽"},{"authorName":"张金利","id":"b1754bb7-493f-42e3-9d6b-089118138aa4","originalAuthorName":"张金利"}],"doi":"","fpage":"1831","id":"47bb0b3d-f8a4-4654-b8b6-922edcc3b064","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"115a8bf5-f39e-453e-91f0-2c2b59c11e58","keyword":"双介孔SiO2","originalKeyword":"双介孔SiO2"},{"id":"b5df675f-78e6-4b6d-878d-98df65468055","keyword":"原位合成","originalKeyword":"原位合成"},{"id":"b870609a-5f06-4754-86c0-b807a1ceba2d","keyword":"MCM-41","originalKeyword":"MCM-41"}],"language":"zh","publisherId":"gncl201010045","title":"双介孔SiO2的原位合成及表征","volume":"41","year":"2010"},{"abstractinfo":"分别采用二维六方孔结构SiO2(SBA-15)和蠕虫状孔结构SiO2 (MSU-J)与MMA原位聚合制备介孔SiO2/PMMA杂化材料.采用XRD、N2吸附-脱附、SEM、DSC和TGA等方法研究了材料的微观结构、力学性能、热性能和介电性能.结果表明:介孔SiO2对PMMA有增强增韧作用,同时也有利于杂化材料热性能和介电性能的提高.杂化材料的热稳定性和耐热性均高于PMMA,含4wt%的SBA-15/PMMA和7wt%的MSU-J/PMMA杂化材料的介电常数由2.91分别降至最低2.73和2.64.","authors":[{"authorName":"焦剑","id":"638d88a3-734c-4097-84a9-772fa6f23e35","originalAuthorName":"焦剑"},{"authorName":"汪雷","id":"23fd2db4-d0c4-480b-911b-95c28437713d","originalAuthorName":"汪雷"},{"authorName":"吕盼盼","id":"6d395f0d-4c7f-47ff-ab25-cc199af17e70","originalAuthorName":"吕盼盼"},{"authorName":"崔永红","id":"4f85c08d-a64b-4d14-b0ed-bf0f151c5116","originalAuthorName":"崔永红"},{"authorName":"赵莉珍","id":"5299f8a5-a24f-46aa-9b89-e0b55e103c38","originalAuthorName":"赵莉珍"}],"doi":"10.3969/j.issn.1007-2330.2014.06.013","fpage":"52","id":"3c9ad8df-2d77-4ef6-9195-b555ecd3b1ff","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"2000b8c2-a3ab-4d89-9dff-02685bd4f198","keyword":"介孔二氧化硅","originalKeyword":"介孔二氧化硅"},{"id":"6af5aae0-3a72-4d02-b029-30cf446df35d","keyword":"聚甲基丙烯酸甲酯","originalKeyword":"聚甲基丙烯酸甲酯"},{"id":"f3f628d1-dce3-4a1e-8695-ad168820a0b3","keyword":"杂化材料结构","originalKeyword":"杂化材料结构"},{"id":"f9392dca-cf62-4359-bc54-c4dd1a065e85","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"yhclgy201406013","title":"不同介孔结构的SiO2对PMMA性能的影响","volume":"44","year":"2014"}],"totalpage":8475,"totalrecord":84750}