{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"合成了低聚季铵盐表面活性剂. 以此为模板剂,在中性条件下合成出结构高度有序的SiO2材料MCM-41. 考察了表面活性剂与硅酸盐的比例对产物结构与表面性质的影响. XRD结果表明,随着表面活性剂与硅酸盐比例的增加,材料孔道有序性增加. 表面活性剂与硅酸盐摩尔比例大于1∶ 35时可以得到高度有序的MCM-41材料,其中n(surf)∶ n(Si)=1∶ 8时,产物的有序性最高. 表面活性剂与硅酸盐的比例对晶胞参数(a0)没有显著影响,a0值在4.30~4.43 nm之间. N2吸附实验表明,随着表面活性剂与硅酸盐比例的增加,产物的BET表面积、体积随之增加. 在n(surf)∶ n(Si)=1∶ 35时,吸附等温线类型由Ⅱ型向Ⅳ型转化. 表面活性剂与硅酸盐的比例对最可几孔径和壁厚度均没有显著影响,二者分别在3.74~3.76 nm和0.54~0.69 nm之间.","authors":[{"authorName":"闫欣","id":"66df5e4e-f3c5-4140-a35d-dfadb63738ed","originalAuthorName":"闫欣"},{"authorName":"韩书华","id":"341b8fa3-c07f-40cf-9bfa-ef434bda2633","originalAuthorName":"韩书华"},{"authorName":"侯万国","id":"b3b05ef9-9eba-4106-8dc5-792ee254f8cb","originalAuthorName":"侯万国"},{"authorName":"党文修","id":"1c7e6995-25ff-42e0-acfb-2045c9f13a9b","originalAuthorName":"党文修"},{"authorName":"许军","id":"b7375128-399f-4d0b-8bc4-ba74b8a07f06","originalAuthorName":"许军"},{"authorName":"于小娟","id":"4fe7511b-c17a-4054-bd4f-e40fce8fb1a4","originalAuthorName":"于小娟"}],"doi":"10.3969/j.issn.1000-0518.2004.09.017","fpage":"946","id":"d2c6819d-b0cd-4582-aca3-007006c4742a","issue":"9","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"9267e540-cf88-4c2a-9f5e-5a54b5c8f227","keyword":"SiO2","originalKeyword":"介孔SiO2"},{"id":"40cf6a85-b11e-420b-add7-916948b456d0","keyword":"六方结构","originalKeyword":"六方结构"},{"id":"1018550a-a544-41aa-8b09-df102d3f6b5b","keyword":"模板法","originalKeyword":"模板法"},{"id":"45897941-5d59-4262-bc9f-9ed86e320569","keyword":"低聚表面活性剂","originalKeyword":"低聚表面活性剂"}],"language":"zh","publisherId":"yyhx200409017","title":"模板法合成六方SiO2","volume":"21","year":"2004"},{"abstractinfo":"以十六烷基三甲基氯化铵(CTAC)为模板剂,正硅酸乙酯(TEOS)为硅源,甲醇为共溶剂,氢氧化钠为催化剂,采用水热法制备出不同粒径、单一分散、高度有序的SiO2微球,并利用扫描电子显微镜(SEM)对所制备的微球进行表征.考察了体系中CTAC浓度、TEOS浓度、甲醇的比率和温度等条件对所制备的SiO2微球的粒径及分散性的影响.同时采用XRD、BET、HRTEM等手段对样品进行分析表征.结果表明合成的单分散球形SiO2具有有序的六方相结构,并且具有较高的比表面积.","authors":[{"authorName":"王丽","id":"5ae2821e-6a44-47b6-a92c-25d65fefc73b","originalAuthorName":"王丽"},{"authorName":"王铎","id":"1a5457f3-d307-4d09-aa36-665e93b32abe","originalAuthorName":"王铎"},{"authorName":"朱桂茹","id":"83cfd6eb-2013-429f-9615-70d9de038c1f","originalAuthorName":"朱桂茹"},{"authorName":"高从堦","id":"11e39994-aa18-40e3-83fb-d1c43991146f","originalAuthorName":"高从堦"}],"doi":"","fpage":"822","id":"821ac92c-04cb-49d1-8102-09cbb5ae3a80","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e31e0cf5-f5d9-48f5-a257-9fa4c3e33263","keyword":"单分散","originalKeyword":"单分散"},{"id":"85738efd-f12e-43c4-ae85-b7d638dc7d59","keyword":"球形颗粒","originalKeyword":"球形颗粒"},{"id":"2ca287ce-d653-44d0-93c0-889a74135dca","keyword":"SiO2","originalKeyword":"介孔SiO2"},{"id":"553452d4-a411-4c51-a6a9-3fd9e4ca2b27","keyword":"十六烷基三甲基氯化铵","originalKeyword":"十六烷基三甲基氯化铵"}],"language":"zh","publisherId":"gncl201005023","title":"单分散球形SiO2的合成与表征","volume":"41","year":"2010"},{"abstractinfo":"本文在硫酸介质中,采用溶胶-凝胶法制备多孔吸附剂SiO2,通过透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N2吸附-脱附对SiO2的结构进行分析,用动态水蒸气吸附分析仪研究SiO2对水蒸气的吸附和再生温度.结果表明制备的SiO2比表面积为607.3 m2·g-1,平均孔径为4.3 nm,在极低(≤10%)和高相对湿度下对水蒸气具有高的吸附量,360 K即可再生,再生性能好.","authors":[{"authorName":"赵靖华","id":"15bf20d4-3c3d-4716-b244-66edd59e3fad","originalAuthorName":"赵靖华"},{"authorName":"魏小兰","id":"f67c89dd-b294-4ac0-91a5-e9f59ee94fb4","originalAuthorName":"魏小兰"},{"authorName":"付珍","id":"c0f3ff13-c992-47fd-a94c-0ecece5f7482","originalAuthorName":"付珍"},{"authorName":"丁静","id":"0b932c5a-b232-450f-9154-1d91e84c15a8","originalAuthorName":"丁静"},{"authorName":"蒋赣","id":"444d2c61-67ed-4b4c-a17e-62678005da6b","originalAuthorName":"蒋赣"},{"authorName":"杨建平","id":"843af28f-ac5e-461b-9882-a9e4d31dc385","originalAuthorName":"杨建平"}],"doi":"","fpage":"160","id":"a202643a-687a-4e7d-b33e-b563983a02a5","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"768c9027-fd69-4539-9ff7-6a5db1680787","keyword":"SiO2","originalKeyword":"介孔SiO2"},{"id":"ea474147-825a-4f01-851f-edaf2d063e4a","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"fe3ff9a3-a3f4-425d-8edc-7a25b9d3add6","keyword":"吸附等温线","originalKeyword":"吸附等温线"}],"language":"zh","publisherId":"gcrwlxb201301040","title":"SiO2的合成及其吸湿性能研究","volume":"34","year":"2013"},{"abstractinfo":"以稻壳SiO2为原料,非离子表面活性剂TX-100为模板,制备了SiO2(MSU-2)及其负载SO2-4/ZrO2固体超强酸催化剂.以乙酸和正丁醇的酯化反应为探针,研究了载体类型、ZrO2的负载量、催化剂用量和反应时间对催化剂性能的影响.结果发现,当SO2-4/ZrO2的负载量在10wt%以上时,催化剂具有超强酸性;SO2-4/ZrO2负载量为20wt%时,催化剂(SO2-4/ZrO2/MS-60)具有最优的催化酯化反应活性.","authors":[{"authorName":"王卫星","id":"15b7b762-4fb9-4113-bd63-ac63ea8321a0","originalAuthorName":"王卫星"},{"authorName":"曾幸荣","id":"b078b5cb-76d6-4b6a-a717-90d4154fa0eb","originalAuthorName":"曾幸荣"},{"authorName":"刘安华","id":"d78c1c25-65f1-4ad3-bc6a-a8358e9ce003","originalAuthorName":"刘安华"},{"authorName":"龚克成","id":"eeb5e6da-807d-4023-922b-b1fb8b2c43f4","originalAuthorName":"龚克成"}],"doi":"10.3969/j.issn.1671-5381.2006.03.005","fpage":"16","id":"329cf879-613e-4bcf-8c06-765b1b561245","issue":"3","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"270d1a78-8caa-4ca5-9ff8-3cd0f1b01854","keyword":"SiO2","originalKeyword":"介孔SiO2"},{"id":"3ef05b56-2908-4e84-bbf4-2494a9ffbeed","keyword":"稻壳SiO2","originalKeyword":"稻壳SiO2"},{"id":"c0d00bdd-ec26-4ba4-9446-65e9fb3306bb","keyword":"非离子表面活性剂","originalKeyword":"非离子表面活性剂"},{"id":"38b74665-e717-4cbe-99f0-4074d9cc2e3c","keyword":"SO2-4/ZrO2","originalKeyword":"SO2-4/ZrO2"},{"id":"07f36bfd-f7df-4813-aeb8-78deb34ce20e","keyword":"乙酸丁酯","originalKeyword":"乙酸丁酯"}],"language":"zh","publisherId":"hccllhyyy200603005","title":"SiO2负载SO2-4/ZrO2固体超强酸催化剂的制备及其酯化催化活性研究","volume":"35","year":"2006"},{"abstractinfo":"综述了SiO2基药物可控释放材料,分析了简单、掺杂、杂化SiO2药物可控释放凝胶,以及SiO2药物可控释放材料的特点,讨论了水和前驱物的比例、催化剂、掺杂剂、凝胶前驱物的种类、凝胶比表面积与孔径、凝胶尺寸及药物负载量、以及药物与凝胶基质及掺杂剂之间的相互作用对可控释放的影响.对于SiO2基药物可控释放材料来说,基质溶胀和基质溶解对药物可控释放的影响不大,药物扩散是释放的主要机制.基于SiO2的pH敏感和光敏开关效应,为SiO2基药物可控释放材料提供了新思路.","authors":[{"authorName":"蒋燕","id":"5c78b86c-0905-423c-96cf-2fe11d869121","originalAuthorName":"蒋燕"},{"authorName":"向虹","id":"eec930af-72de-4f93-9889-1308b86c5423","originalAuthorName":"向虹"},{"authorName":"游来江","id":"dbc5ed71-d508-44e8-94df-92fa93d40c57","originalAuthorName":"游来江"},{"authorName":"吴志坚","id":"333701f3-be08-48a3-8241-510958fdb25f","originalAuthorName":"吴志坚"}],"doi":"","fpage":"50","id":"fa4e5ec3-7db0-467b-983e-8bec392866fd","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4b0307a0-d525-4fa2-9ead-1d7174364f1a","keyword":"SiO2凝胶","originalKeyword":"SiO2凝胶"},{"id":"786fe82c-94d1-490e-a604-e1d1c2768f74","keyword":"SiO2","originalKeyword":"介孔SiO2"},{"id":"05e6f4b3-4009-4132-aa32-b9cf85cb6cb3","keyword":"药物","originalKeyword":"药物"},{"id":"d81a233d-575a-4a59-8e78-5ca8eb0c98df","keyword":"可控释放","originalKeyword":"可控释放"},{"id":"e34d6cb4-0a8a-4a25-99f9-995963d4dcb0","keyword":"扩散","originalKeyword":"扩散"},{"id":"e189c42f-6162-4642-a0e3-3e10014114f3","keyword":"开关效应","originalKeyword":"开关效应"}],"language":"zh","publisherId":"cldb200601013","title":"SiO2基药物可控释放材料","volume":"20","year":"2006"},{"abstractinfo":"以机械球磨法制备具有可逆吸放氢性能的NaAlH4-Tm2O3储氢材料体系.利用相同制备方法进一步研究两种不同孔道材料(大Al2O3与SiO2)对NaAlH4-Tm2O3体系储氢性能的影响,测试样品的循环吸放氢性能,并对样品吸放氢前后的结构进行表征.结果表明:大Al2O3材料的添加并不能明显改善NaAlH4-Tm2O3体系的放氢速率和放氢量,而SiO2的加入使NaAlH4-Tm2O3体系在150℃条件下5h内的首次放氢量(质量分数)达到4.61%,高于NaAlH4-Tm2O3体系的4.27%,增加了约8.0%.此外,添加SiO2的NaAlH4-Tm2O3体系放氢速率也有所提高.","authors":[{"authorName":"马俊","id":"4e4b4420-7b93-4b14-918d-181f002ee216","originalAuthorName":"马俊"},{"authorName":"李洁","id":"d76289a3-72ea-4895-a2bf-724e7d86013e","originalAuthorName":"李洁"},{"authorName":"唐仁英","id":"aebaeabd-7258-47b3-91c0-f81125adde34","originalAuthorName":"唐仁英"},{"authorName":"李文章","id":"cd0f7883-ff0f-493e-bc2d-f8fb2bc07d9c","originalAuthorName":"李文章"},{"authorName":"陈启元","id":"f5a2baa8-8020-417d-b86e-7e8547a6fd57","originalAuthorName":"陈启元"}],"doi":"","fpage":"1659","id":"8e4c9f6c-fbef-4d57-a39c-4ea05701ba5e","issue":"6","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"c599924d-e50e-47cc-8bfb-8167a47252bf","keyword":"NaAlH4","originalKeyword":"NaAlH4"},{"id":"d1686aef-44a6-482d-9b23-3e5107ac67a3","keyword":"Tm2O3","originalKeyword":"Tm2O3"},{"id":"079ac219-e727-48dc-bf68-aaac12a1aede","keyword":"大Al2O3","originalKeyword":"大孔Al2O3"},{"id":"be9562e7-25e0-4627-aa00-7f94db6ea2db","keyword":"SiO2","originalKeyword":"介孔SiO2"}],"language":"zh","publisherId":"zgysjsxb201206016","title":"孔道Al2O3/SiO2对NaAlH4-Tm2O3体系储氢性能的影响","volume":"22","year":"2012"},{"abstractinfo":"以正硅酸乙酯(TEOS)为硅源,十六烷基三甲基溴化铵(CTAB)为模板剂,采用溶胶-凝胶法制备了具有双独立分布的SiO2,并用FT-IR、HRTEM、BET等方法对SiO2进行了表征.结果表明,双SiO2中存在大量无序排列的2~3nm的小和18nm左右的大,具有高比表面积(716.4~968.6m2/g)和大(1.03~1.63mL/g):通过改变氨水及模板剂的用量可以实现对分布的调控.","authors":[{"authorName":"张晓芳","id":"0ede1fb2-1060-4e3c-80c8-6093a3b43f1f","originalAuthorName":"张晓芳"},{"authorName":"郭翠梨","id":"f6347140-4123-4696-843b-00196b59ff81","originalAuthorName":"郭翠梨"},{"authorName":"王小丽","id":"7f501920-f46e-42e5-a67d-47842ff8b0d5","originalAuthorName":"王小丽"},{"authorName":"张金利","id":"0b5a4e4a-ee6e-47a3-b143-d9c2ec00aeae","originalAuthorName":"张金利"}],"doi":"","fpage":"92","id":"b65bb6fd-2536-4bb0-9229-8304739e1f71","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"014d2769-37e1-454e-9510-0cf427bf4bbc","keyword":"双SiO2","originalKeyword":"双介孔SiO2"},{"id":"efb3b97f-a580-4ec1-872c-838a32a58763","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"0d881e9d-9794-4dfe-bec6-71483958ddc2","keyword":"模板剂","originalKeyword":"模板剂"}],"language":"zh","publisherId":"cldb201122025","title":"双SiO2的制备及表征","volume":"25","year":"2011"},{"abstractinfo":"SiO2薄膜具有优良的绝热性能,在热学、光学、微电子等领域有广阔的应用前景,其结构对降低薄膜的热导率有着十分重要的作用,对薄膜热导率的计算模型及测量方法的研究仍在不断探索中.对SiO2膜的隔热机理进行了概述,从理论方面综述了对热导率研究的一些基本方法,并对薄膜热传导的尺寸效应作了说明.","authors":[{"authorName":"李凌智","id":"4850d034-a547-4930-8608-17567fbc44e4","originalAuthorName":"李凌智"},{"authorName":"张敏","id":"a7e01bed-1bcb-44d9-ac41-3b39fd998b11","originalAuthorName":"张敏"},{"authorName":"张瑾","id":"fabebad7-4430-427e-87f5-40f5aa5f319e","originalAuthorName":"张瑾"},{"authorName":"柳清菊","id":"02318204-2f1b-4222-ae67-b8e8a8fa507d","originalAuthorName":"柳清菊"}],"doi":"","fpage":"927","id":"d3242a4c-20a7-4c9f-8698-c0c0c0b7629e","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b60329fd-5f45-41a0-8368-28be55ca0bd0","keyword":"SiO2薄膜","originalKeyword":"SiO2介孔薄膜"},{"id":"2138209f-a5c8-45da-92d8-ba009049245e","keyword":"隔热","originalKeyword":"隔热"},{"id":"e545536e-756d-4787-80fe-6f72036e05ac","keyword":"微尺度传热","originalKeyword":"微尺度传热"},{"id":"c7f475e6-86a5-4bbc-a2fd-eede40aa3c60","keyword":"热导率","originalKeyword":"热导率"}],"language":"zh","publisherId":"gncl201006001","title":"SiO2薄膜材料的隔热理论","volume":"41","year":"2010"},{"abstractinfo":"以富含大或大结构的硅胶为原料,在其上通过原位晶化合成具有小-大分布的复合SiO2,并利用N2吸附-脱附、X射线衍射、扫描电镜、透射电子显微镜等手段对SiO2的物化性能和分布进行了表征.结果表明,所制备的样品具有双分布,孔径分别在3和45nm左右;小结构与MCM-41类似,负载于硅胶表面及大壁上;大的孔径较硅胶孔径有所减小,但未被完全填充堵塞.通过改变TEOS/大硅胶及CTAB/TEOS的配比可以实现对双SiO2分布的调控.","authors":[{"authorName":"郭翠梨","id":"4645bf86-bde0-4b0b-9532-e5ea5cf89a1b","originalAuthorName":"郭翠梨"},{"authorName":"王小丽","id":"4e1e640c-367d-4e37-8de5-814390f571a7","originalAuthorName":"王小丽"},{"authorName":"张金利","id":"b1754bb7-493f-42e3-9d6b-089118138aa4","originalAuthorName":"张金利"}],"doi":"","fpage":"1831","id":"47bb0b3d-f8a4-4654-b8b6-922edcc3b064","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"115a8bf5-f39e-453e-91f0-2c2b59c11e58","keyword":"双SiO2","originalKeyword":"双介孔SiO2"},{"id":"b5df675f-78e6-4b6d-878d-98df65468055","keyword":"原位合成","originalKeyword":"原位合成"},{"id":"b870609a-5f06-4754-86c0-b807a1ceba2d","keyword":"MCM-41","originalKeyword":"MCM-41"}],"language":"zh","publisherId":"gncl201010045","title":"双SiO2的原位合成及表征","volume":"41","year":"2010"},{"abstractinfo":"分别采用二维六方结构SiO2(SBA-15)和蠕虫状结构SiO2 (MSU-J)与MMA原位聚合制备SiO2/PMMA杂化材料.采用XRD、N2吸附-脱附、SEM、DSC和TGA等方法研究了材料的微观结构、力学性能、热性能和电性能.结果表明:SiO2对PMMA有增强增韧作用,同时也有利于杂化材料热性能和电性能的提高.杂化材料的热稳定性和耐热性均高于PMMA,含4wt%的SBA-15/PMMA和7wt%的MSU-J/PMMA杂化材料的介电常数由2.91分别降至最低2.73和2.64.","authors":[{"authorName":"焦剑","id":"638d88a3-734c-4097-84a9-772fa6f23e35","originalAuthorName":"焦剑"},{"authorName":"汪雷","id":"23fd2db4-d0c4-480b-911b-95c28437713d","originalAuthorName":"汪雷"},{"authorName":"吕盼盼","id":"6d395f0d-4c7f-47ff-ab25-cc199af17e70","originalAuthorName":"吕盼盼"},{"authorName":"崔永红","id":"4f85c08d-a64b-4d14-b0ed-bf0f151c5116","originalAuthorName":"崔永红"},{"authorName":"赵莉珍","id":"5299f8a5-a24f-46aa-9b89-e0b55e103c38","originalAuthorName":"赵莉珍"}],"doi":"10.3969/j.issn.1007-2330.2014.06.013","fpage":"52","id":"3c9ad8df-2d77-4ef6-9195-b555ecd3b1ff","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"2000b8c2-a3ab-4d89-9dff-02685bd4f198","keyword":"二氧化硅","originalKeyword":"介孔二氧化硅"},{"id":"6af5aae0-3a72-4d02-b029-30cf446df35d","keyword":"聚甲基丙烯酸甲酯","originalKeyword":"聚甲基丙烯酸甲酯"},{"id":"f3f628d1-dce3-4a1e-8695-ad168820a0b3","keyword":"杂化材料结构","originalKeyword":"杂化材料结构"},{"id":"f9392dca-cf62-4359-bc54-c4dd1a065e85","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"yhclgy201406013","title":"不同结构的SiO2对PMMA性能的影响","volume":"44","year":"2014"}],"totalpage":8475,"totalrecord":84750}