{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"添加界面活性剂的核沸腾在改变蒸气泡生长特性的同时,主要是强化了对流换热.本文考虑流体湿润性影响,对核沸腾换热沿用最广的对流类比模型-Rohsenow模型进行了修正.通过对实验数据的检验,表明修正后的模型预示值与实测结果吻合很好.","authors":[{"authorName":"王补宣","id":"1066bde2-3013-4532-8b8f-e60bc6d08ae5","originalAuthorName":"王补宣"},{"authorName":"李春辉","id":"fc6327f1-657e-4405-b7ae-b5ca74ddc5bd","originalAuthorName":"李春辉"},{"authorName":"文东升","id":"ce3bbe97-e088-4b72-aca5-82884393a9ab","originalAuthorName":"文东升"},{"authorName":"彭晓峰","id":"02af4e06-35c7-4bd8-9661-a468ce777ed2","originalAuthorName":"彭晓峰"}],"doi":"","fpage":"79","id":"05387dad-54a8-4e6c-ba79-8ec6f114d9e5","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"16c48538-7f17-4da9-a527-bd3598bd15f9","keyword":"核沸腾","originalKeyword":"核沸腾"},{"id":"4c491ed5-7ac7-421c-9ffb-0d215ed7c8ee","keyword":"界面活性剂","originalKeyword":"界面活性剂"},{"id":"b450da10-323c-4424-b118-acc7c51bbf25","keyword":"Rohsenow模型的修正","originalKeyword":"Rohsenow模型的修正"}],"language":"zh","publisherId":"gcrwlxb200201022","title":"考虑流体湿润性影响的核沸腾RohsenoW修正模型","volume":"23","year":"2002"},{"abstractinfo":"本文采用基于相平衡理论的最小能量原理,根据当地气液两相流动条件确定气液界面形状,以此为基础,从理论上探讨水平细圆管内流动凝结的特点。通过与竖直条件下管内凝结换热特性的对比,分析重力、气液界面剪切力、表面张力对流动凝结的影响。研究发现,细圆管由竖直变为水平放置时,管径的减小同样导致重力的影响削弱,并且凝结换热得到进一步强化;但由于流型的变化,随管径的减小强化的程度减弱。","authors":[{"authorName":"王补宣","id":"3eb4e89e-03ba-4645-9355-d18b43815a5b","originalAuthorName":"王补宣"},{"authorName":"杜小泽","id":"b138a66a-e10c-4c3c-b949-2610757a16d1","originalAuthorName":"杜小泽"}],"doi":"","fpage":"66","id":"1fcc70c5-06f8-46fd-82aa-a5896885c4cd","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1042a60e-bf91-46b0-afbd-bc1776d831f6","keyword":"细圆管","originalKeyword":"细圆管"},{"id":"9914b6c5-1c0f-4366-a5c4-d9d77e2d2c1b","keyword":"流动凝结","originalKeyword":"流动凝结"},{"id":"7dca3f12-0878-4a1b-a40e-fd245ae5801d","keyword":"流型","originalKeyword":"流型"}],"language":"zh","publisherId":"gcrwlxb200001017","title":"水平和竖直细圆管内流动凝结换热特性的对比研究","volume":"21","year":"2000"},{"abstractinfo":"本文针对过冷沸腾中汽泡顶部射流现象进行分析与模拟.建立汽泡界面模型,考虑蒸发凝结以及Marangoni效应.利用CFD软件Fluent 6.0对模型进行计算分析,成功模拟得到泡顶射流流场.模拟结果无论是流场结构,还是流场强度,都与实验一致吻合,充分证明泡顶射流由Marangoni效应引起.","authors":[{"authorName":"柯道友","id":"0a0bac19-1fae-413d-a2f1-f75e17879573","originalAuthorName":"柯道友"},{"authorName":"王昊","id":"15e223ba-e6fe-416b-a5eb-4ab16d0181d1","originalAuthorName":"王昊"},{"authorName":"彭晓峰","id":"7e42754e-7035-48b8-b1d0-88cb2c72141c","originalAuthorName":"彭晓峰"},{"authorName":"王补宣","id":"72d3b394-d0a8-47d8-bf23-a6ed34c67c54","originalAuthorName":"王补宣"}],"doi":"","fpage":"143","id":"29d017c5-e4b4-476d-9446-2103edc9a099","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e2687289-6e2c-4689-83f1-2668d1182dde","keyword":"过冷沸腾","originalKeyword":"过冷沸腾"},{"id":"7095cc36-741b-4350-9022-1fdeb29e0e73","keyword":"汽泡","originalKeyword":"汽泡"},{"id":"697fbb98-bc9b-4790-a4ce-403d4ef0d21a","keyword":"射流","originalKeyword":"射流"},{"id":"ea66f4c9-3203-44e9-abd2-9b419e9ff945","keyword":"Marangoni","originalKeyword":"Marangoni"},{"id":"6c714cea-cda1-4ac5-9fa4-961bd387c234","keyword":"CFD","originalKeyword":"CFD"}],"language":"zh","publisherId":"gcrwlxb2005z1037","title":"过冷沸腾非均相汽泡界面特性分析","volume":"26","year":"2005"},{"abstractinfo":"本文报告了50 nm氧化铜(体积百分比φ≤0.6%)与去离子水的悬浮液有效导热系数测量结果,讨论了温度依变性对导热系数的影响,运用适用于低浓度悬浮液的能量和质量方程进行分析表明,颗粒空间分布和温度场间相互影响,进而影响导热系数测量结果.考虑低浓度悬浮液中颗粒布朗扩散和热泳作用,讨论了运用准稳态方法测量纳米颗粒悬浮液导热系数的有效性,即需同时保证合适的加热热流密度和液体试样两侧的温差.","authors":[{"authorName":"周乐平","id":"58a0ae46-7b81-4fc5-9fed-58d2b0f3a987","originalAuthorName":"周乐平"},{"authorName":"王补宣","id":"638e52a2-e902-44d3-82e4-8d84d52e4084","originalAuthorName":"王补宣"},{"authorName":"彭晓峰","id":"9e22f08a-0ec8-4240-ad56-22b16a46b43d","originalAuthorName":"彭晓峰"},{"authorName":"杜小泽","id":"257ce91f-78ef-477f-93fd-2606abc782b7","originalAuthorName":"杜小泽"},{"authorName":"杨勇平","id":"dd1ad7f2-2456-4de2-bd83-14564945565a","originalAuthorName":"杨勇平"}],"doi":"","fpage":"1567","id":"2b6b8b85-7e01-468e-9185-4b5d54d818cd","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2d599ce5-4b98-4c63-b8a0-4d641461b045","keyword":"温度依变性","originalKeyword":"温度依变性"},{"id":"32cab02f-fa66-4cd1-b699-b5f89d539859","keyword":"纳米颗粒悬浮液","originalKeyword":"纳米颗粒悬浮液"},{"id":"b2efb079-36be-4210-8a6d-a92f15951347","keyword":"导热系数","originalKeyword":"导热系数"},{"id":"ca0e200e-d1b2-4bcb-ae0d-37c5440957db","keyword":"测量","originalKeyword":"测量"}],"language":"zh","publisherId":"gcrwlxb200809035","title":"温度依变性对纳米颗粒悬浮液导热系数测量影响","volume":"29","year":"2008"},{"abstractinfo":"实验研究了细圆管内去离子水和氧化铜纳米颗粒悬浮液的对流换热特性.根据实验数据,得到纳米颗粒悬浮液相对于去离子水的对流换热强化特性.结果表明,氧化铜纳米颗粒的加入强化了去离子水的换热性能,其强化程度随Re的变化因管径而异,并且与流态有关.","authors":[{"authorName":"陈骁","id":"9530ca62-edb4-4709-b9c5-7e4f55d315e1","originalAuthorName":"陈骁"},{"authorName":"李俊明","id":"122a06b7-7074-4633-b8c9-6b40000ab05c","originalAuthorName":"李俊明"},{"authorName":"戴闻亭","id":"a72c8522-c9da-4fed-9fbf-31c2c48017ec","originalAuthorName":"戴闻亭"},{"authorName":"王补宣","id":"fb4e1e6c-899b-4016-97f1-92f1319d425e","originalAuthorName":"王补宣"}],"doi":"","fpage":"643","id":"31eddf73-19a6-4f26-b20b-f62d2e49113e","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"46bc00b0-ff94-486b-b967-a5455c0be086","keyword":"纳米颗粒悬浮液","originalKeyword":"纳米颗粒悬浮液"},{"id":"73063e8f-aa5a-4b79-8798-db8b3a148f97","keyword":"对流换热","originalKeyword":"对流换热"},{"id":"2e059cce-40a6-4df4-92d7-9d1fdc38446c","keyword":"强化传热","originalKeyword":"强化传热"}],"language":"zh","publisherId":"gcrwlxb200404032","title":"细圆管内纳米颗粒悬浮液强化对流换热的探讨","volume":"25","year":"2004"},{"abstractinfo":"微尺度加热表面过冷核态沸腾传热实验的可视化观测、局部细节过程的记录是其机理研究的重要方法.本文利用高速摄像仪分别对30μm、50μm和60 μm铂丝在过冷下汽泡生长及运动情况进行了系统观测.观测到与以往微尺度和常规尺度下加热丝表面汽泡行为不同的“新”特征:微细加热丝上的过热薄液层现象,汽泡在合适热流下的悬浮运动以及汽泡间出现环绕运动等一些实验现象.","authors":[{"authorName":"周乐平","id":"e7595914-4c54-409d-aa4b-d6a0ab388161","originalAuthorName":"周乐平"},{"authorName":"魏龙亭","id":"647b5bf9-1331-463b-b7bb-d2319ac2329d","originalAuthorName":"魏龙亭"},{"authorName":"李媛园","id":"87d394d6-5cfe-49e0-a069-aeaffc9eaff7","originalAuthorName":"李媛园"},{"authorName":"杜小泽","id":"90d95683-8e17-42f3-ba94-f5933390c7b5","originalAuthorName":"杜小泽"},{"authorName":"王补宣","id":"52573733-088d-46a6-b63d-e5188c461da7","originalAuthorName":"王补宣"}],"doi":"","fpage":"582","id":"3630e237-d694-4f78-8cee-cee28dfe010a","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6324d72d-4891-448b-b075-b31594910422","keyword":"过冷","originalKeyword":"过冷"},{"id":"59dcbe09-9831-4030-ac59-6a7b4315c135","keyword":"核态沸腾","originalKeyword":"核态沸腾"},{"id":"deedee09-e493-48c1-be94-464fa91c6575","keyword":"汽泡","originalKeyword":"汽泡"},{"id":"e861e2cd-8b37-4553-abb0-694bdd89394c","keyword":"射流","originalKeyword":"射流"},{"id":"41cb885e-674f-4418-bb21-345eb797465f","keyword":"绕流","originalKeyword":"绕流"}],"language":"zh","publisherId":"gcrwlxb201503027","title":"微细加热丝过冷核态沸腾汽泡行为的再观测","volume":"36","year":"2015"},{"abstractinfo":"本文通过显微摄像的手段研究霜层表面冰晶形态演化.霜层充分发展后,部分柱状冰晶在周围冰晶正常生长的同时发生升华,并且升华过程从温度较低的根部开始.对于不同的结霜条件,柱状冰晶的升华过程可能以颈部熔断或者顶部融化两种不同方式结束.霜层表面存在复杂的温度和蒸汽浓度分布,局部出现负值的过饱和度是产生这种反常升华现象的主要原因.","authors":[{"authorName":"梁展鹏","id":"712cd922-2323-4679-a822-c2b3fbc3a32a","originalAuthorName":"梁展鹏"},{"authorName":"彭晓峰","id":"641c0981-5167-47a3-b83d-925c51ccbbe9","originalAuthorName":"彭晓峰"},{"authorName":"李智敏","id":"536386a1-e8bd-48b9-be9a-6fe1db58ba79","originalAuthorName":"李智敏"},{"authorName":"王补宣","id":"bd5729f4-dcd4-4caf-ba29-a35e7ba74386","originalAuthorName":"王补宣"}],"doi":"","fpage":"267","id":"36d4b6f6-e0a2-44c2-91c2-5b74269af865","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0add57c6-6589-40de-a1c5-5f6d2f586d04","keyword":"霜","originalKeyword":"霜"},{"id":"46cad098-9b92-47bf-a31e-826608aea0b3","keyword":"冰晶","originalKeyword":"冰晶"},{"id":"bf574f94-9c39-4c17-b149-f83d61a03bed","keyword":"升华","originalKeyword":"升华"}],"language":"zh","publisherId":"gcrwlxb200902024","title":"霜层表面部分冰晶升华的实验观测","volume":"30","year":"2009"},{"abstractinfo":"基于近真实的气凝胶复杂结构,提出气固耦合导热的并联比例因子,考虑气凝胶微观结构特征和纳米尺度导热效应,建立解析法模型.结果表明本模型能较好预测不同压力、温度、密度及不同微观结构的气凝胶整体热导率,能快速应用于气凝胶热物性的构效关系的预测和优化.常温下气凝胶整体热导率在密度130 kg·m-3时取得极小值.高温下整体热导率随二次颗粒数量的增多而减小.气凝胶在高温下的隔热性能主要受气凝胶二次颗粒数密度的影响.","authors":[{"authorName":"赵俊杰","id":"d204c748-37d7-4aad-94e6-c37f0cb7f612","originalAuthorName":"赵俊杰"},{"authorName":"于海童","id":"5667d843-b452-4cc0-88a5-2b627a6bb565","originalAuthorName":"于海童"},{"authorName":"段远源","id":"7e8545c0-2ea3-4891-9123-e3b6665c59c4","originalAuthorName":"段远源"},{"authorName":"王晓东","id":"72ba0b07-350f-4bae-8988-c23735c8a327","originalAuthorName":"王晓东"},{"authorName":"王补宣","id":"79bb93ab-67af-44bf-87c0-699da195df2b","originalAuthorName":"王补宣"}],"doi":"","fpage":"1926","id":"4e3fd1f7-729e-4131-8cad-51bc644de0ed","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"51726132-6d9e-48ce-8671-5267693ea2b1","keyword":"气凝胶","originalKeyword":"气凝胶"},{"id":"7ad41ba7-14c2-467f-92b5-b51293b01366","keyword":"整体热导率","originalKeyword":"整体热导率"},{"id":"8c8074d7-b761-4df1-a883-fd468d320e32","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"14b6ed8b-c376-4a0a-bf6d-2745d3ec07c7","keyword":"二次多孔纳米颗粒","originalKeyword":"二次多孔纳米颗粒"}],"language":"zh","publisherId":"gcrwlxb201310031","title":"基于微观结构的气凝胶热导率分析","volume":"34","year":"2013"},{"abstractinfo":"实验研究了细圆管内氧化铜纳米颗粒悬浮换热特性.试验段的管径为0.68 mm、1.01 mm和1.28 mm,氧化铜纳米颗粒平均粒径为50 nm,悬浮液中氧化铜纳米颗粒质量分数分别为0.02,0.04和0.06,分散剂十二烷基苯磺酸钠(SDBS)质量的分数为0.02.为进行对比分析,还测试了水的换热特性.实验结果表明,在所研究的尺寸下,层流时去离子水的努谢尔特数Nu要高于已有液体对流换热关联式计算之值,纳米颗粒悬浮液的对流换热系数高于水的,且纳米颗粒的质量分数越高,悬浮液的对流换热系数越大.随着流动从层流向湍流的转捩,强化效果也越明显.","authors":[{"authorName":"戴闻亭","id":"ed17b8c1-b781-4f72-88fd-a251a86b62a2","originalAuthorName":"戴闻亭"},{"authorName":"李俊明","id":"4f55bd9c-c76d-4589-a705-8f69f7effb12","originalAuthorName":"李俊明"},{"authorName":"陈骁","id":"7d184d00-e701-4a54-af39-860b350fbebf","originalAuthorName":"陈骁"},{"authorName":"王补宣","id":"99106712-b75a-4c33-88fb-0e8a06f963d5","originalAuthorName":"王补宣"}],"doi":"","fpage":"633","id":"5f08d29f-48b6-4946-aaec-6f8774df2a1f","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d9dbceee-f536-475c-96b3-f7de1be51b67","keyword":"细圆管","originalKeyword":"细圆管"},{"id":"d831ee62-d157-44c7-8d11-243e16392529","keyword":"纳米颗粒悬浮液","originalKeyword":"纳米颗粒悬浮液"},{"id":"177ba166-283b-41d5-973e-f8de04bdf2df","keyword":"对流换热","originalKeyword":"对流换热"}],"language":"zh","publisherId":"gcrwlxb200304026","title":"细圆管内纳米悬浮液对流换热的实验研究","volume":"24","year":"2003"},{"abstractinfo":"实验研究了微细圆管内凝结换热特性,实验中采用四种不锈钢管,其内径范围为289~997μm.基于实验结果,分析了换热温差、蒸汽进口雷诺数Rein和管径对管内膜状凝结换热系数的影响,发现温差对管内膜状凝结换热的影响很小,Nu随蒸汽进口雷诺数Rein增加而增大,随管径减小而降低,而对流换热系数随管径减小而显著增大.","authors":[{"authorName":"安刚","id":"4fa609dd-ebd8-44b7-a2e0-0d35d0c9e532","originalAuthorName":"安刚"},{"authorName":"李俊明","id":"859f43e2-129d-46b8-9895-4f1c3da5b353","originalAuthorName":"李俊明"},{"authorName":"张会勇","id":"98ed67f5-e1e6-4a47-afb8-9a2f3e85fdce","originalAuthorName":"张会勇"},{"authorName":"王补宣","id":"6383bd32-df71-4868-860d-3d91bff89cf9","originalAuthorName":"王补宣"}],"doi":"","fpage":"652","id":"63348729-2f8c-41a7-848c-d523956f321e","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2bbd0f5b-8deb-4b34-a608-87da35b7a4ef","keyword":"微细圆管","originalKeyword":"微细圆管"},{"id":"63b2823f-7d9f-4200-981c-0854b90da868","keyword":"膜状凝结","originalKeyword":"膜状凝结"},{"id":"de603f89-e621-4f11-b34e-24f05e4bffcd","keyword":"换热","originalKeyword":"换热"},{"id":"f46d9b3a-cbf4-490a-8aed-4a3d51e0475b","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"gcrwlxb200604036","title":"水平微细圆管内膜状凝结换热特性的研究","volume":"27","year":"2006"}],"totalpage":78,"totalrecord":776}