{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在空气中通过单辊快淬法制备了Fe57.6Co14.4B19.2Si4.8Nb4 金属玻璃,研究了该金属玻璃在保持非晶态下退火温度和保温时间对静态磁性能和交流低频下的损耗特性的影响.随着退火温度的升高,直流最大磁导率升高、矫顽力下降、电阻率增加,低频交流铁芯损耗也随着温度的升高而明显降低,在773K下保温30min得到最佳的直流性能和交流低频损耗性能.","authors":[{"authorName":"刘烜","id":"d6225bfa-1348-4db9-8e04-7d790440397a","originalAuthorName":"刘烜"},{"authorName":"李丽娜","id":"3c638083-c968-40c0-89d6-6ad46b4b877c","originalAuthorName":"李丽娜"},{"authorName":"丁燕红","id":"a365e7ed-2e8e-4bd7-bbce-7f320def5150","originalAuthorName":"丁燕红"},{"authorName":"赵水生","id":"c3e7bb84-36d1-427b-8b3f-717b3b43d666","originalAuthorName":"赵水生"},{"authorName":"龙毅","id":"e116d80f-b6e0-47e6-b169-f6d205056380","originalAuthorName":"龙毅"},{"authorName":"叶荣昌","id":"170a6948-086e-4513-8a0d-ed8b0fe81f48","originalAuthorName":"叶荣昌"},{"authorName":"常永勤","id":"12d7be01-4d2f-4eb1-8382-78f5a5330dda","originalAuthorName":"常永勤"}],"doi":"","fpage":"1","id":"903c9b74-09e9-4666-bffe-7230fd0ea3f4","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"bbb45fed-c8f2-4d11-9b7b-c050d5c3e617","keyword":"铁基金属玻璃","originalKeyword":"铁基金属玻璃"},{"id":"996aeb53-9571-4ea8-a62b-a0ce511900c0","keyword":"软磁材料","originalKeyword":"软磁材料"},{"id":"db5775dd-c967-4116-9843-47cf4ec1bb36","keyword":"退火","originalKeyword":"退火"},{"id":"dc96078f-2653-46eb-85d0-82eb4eeb0bd7","keyword":"低频损耗","originalKeyword":"低频损耗"}],"language":"zh","publisherId":"jsrclxb200802001","title":"铁基金属玻璃区间退火对磁性能影响的研究","volume":"29","year":"2008"},{"abstractinfo":"对[(Fe1-xCox)0.75B0.2Si0.05]96Nb4(x=0.1、0.2、0.3、0.4)金属玻璃在1kHz~15MHz间的磁谱进行了研究,该系列金属玻璃的磁谱是典型的德拜型谱线.由于钴元素的添加,表现出较高的弛豫频率(f0)和较高的电阻率(ρRT),但是复数磁导率实部幅值降低.当x=0.4时,弛豫频率达到最大值1.1×106Hz.电阻率随着钴元素加入从212μΩ·cm增加到272μΩ·cm.","authors":[{"authorName":"刘烜","id":"92644347-7e83-4144-8d0a-317757131d1c","originalAuthorName":"刘烜"},{"authorName":"丁燕红","id":"2a15e3f3-c560-4977-8acb-1481cfeab3c4","originalAuthorName":"丁燕红"},{"authorName":"赵水生","id":"f9266b7d-4cce-4797-926a-0a050e82b1c9","originalAuthorName":"赵水生"},{"authorName":"龙毅","id":"ba50ea14-e33d-44bf-8547-f7b414e0e398","originalAuthorName":"龙毅"},{"authorName":"叶荣昌","id":"853b17c7-7dd4-4ce4-be8d-540eb0ceadfa","originalAuthorName":"叶荣昌"},{"authorName":"常永勤","id":"af6cfd5e-ad6b-4d53-9400-65ce9675b5eb","originalAuthorName":"常永勤"}],"doi":"","fpage":"1956","id":"d12b17f7-85c0-474d-8675-4a46fb8a7caa","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e1664a43-23fa-4c1e-a4db-103e5f01365a","keyword":"铁基金属玻璃","originalKeyword":"铁基金属玻璃"},{"id":"d22bf659-58b1-49cf-b120-3a4faf6688ff","keyword":"复数磁导率","originalKeyword":"复数磁导率"},{"id":"593e0493-a7b1-4a48-a499-1831a4aa4a10","keyword":"磁谱","originalKeyword":"磁谱"}],"language":"zh","publisherId":"gncl200712010","title":"[(Fe1-xCox)0.75B0.2Si0.05]96Nb4金属玻璃的磁谱研究","volume":"38","year":"2007"},{"abstractinfo":"利用脉冲小孔法在He气氛下制备出了球形粒径可控的[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4金属玻璃单分散微粒子, 这些粒子具有粒径均匀和圆球度高等优良特点. 通过XRD、DSC以及TEM对所获得的粒子进行了检测分析, 结果表明随着粒径尺寸的减小, 微粒子的微观结构从混合相逐渐向全金属玻璃相转变, 制备的粒子均为全玻璃相, 临界尺寸小于645 μm. 通过冷却速率的计算, 得到全玻璃相微粒子的临界冷却速率为800~1100 K/s, 该速度与环境气氛的改变无关, 并且该计算值低于同成分的大块金属玻璃合金TTT曲线的测量值.","authors":[{"authorName":"李颖","id":"e1164d46-7199-4bb2-bcb7-64c2620f964e","originalAuthorName":"李颖"},{"authorName":"董伟","id":"ebe5deb3-00dc-4e59-9bf4-c14e59080ede","originalAuthorName":"董伟"},{"authorName":"三浦彩子","id":"4f937395-0cf9-42aa-8a65-e7cae19b5d9c","originalAuthorName":"三浦彩子"},{"authorName":"谭毅","id":"f3fafccc-7d13-49cc-b91b-4fd6e15a3c6f","originalAuthorName":"谭毅"},{"authorName":"川崎亮","id":"13249e6f-fd22-4099-b9ae-df52b08e0191","originalAuthorName":"川崎亮"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2012.11582","fpage":"849","id":"92967325-e798-4bd3-9858-c0af5f10728d","issue":"8","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9c09da31-5f65-4dbd-ae4f-c8eed053e71b","keyword":"金属玻璃; 微观结构; 脉冲小孔喷射法; 临界冷却速率","originalKeyword":"金属玻璃; 微观结构; 脉冲小孔喷射法; 临界冷却速率"}],"language":"zh","publisherId":"1000-324X_2012_8_3","title":"球形铁基金属玻璃单分散粒子的制备及评价","volume":"27","year":"2012"},{"abstractinfo":"利用脉冲小孔法在He气氛下制备出了球形粒径可控的[(Fe0.5Co0.5)0.75B0.2Si0.05 ]96Nb4金属玻璃单分散微粒子,这些粒子具有粒径均匀和圆球度高等优良特点.通过XRD、DSC以及TEM对所获得的粒子进行了检测分析,结果表明随着粒径尺寸的减小,微粒子的微观结构从混合相逐渐向全金属玻璃相转变,制备的粒子均为全玻璃相,临界尺寸小于645 μm.通过冷却速率的计算,得到全玻璃相微粒子的临界冷却速率为800~1100 K/s,该速度与环境气氛的改变无关,并且该计算值低于同成分的大块金属玻璃合金TTT曲线的测量值.","authors":[{"authorName":"李颖","id":"58d8293b-ca22-4c6f-bbcb-59ce7af3bcd3","originalAuthorName":"李颖"},{"authorName":"董伟","id":"16e6388b-2f0a-45ee-8a19-8827716b7ba1","originalAuthorName":"董伟"},{"authorName":"三浦彩子","id":"70426791-2c6d-45b4-a187-eceb1fa8dd83","originalAuthorName":"三浦彩子"},{"authorName":"谭毅","id":"54f2209f-9b9e-4218-866c-30f986eaa263","originalAuthorName":"谭毅"},{"authorName":"川崎亮","id":"c9e0ba97-3508-4de9-a26d-416cf1cbe058","originalAuthorName":"川崎亮"}],"doi":"10.3724/SP.J.1077.2012.11582","fpage":"849","id":"c2f88add-64da-458f-9fd9-5f67025c3462","issue":"8","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"376df0d5-b6b3-4c63-b1b0-39a39f863f0d","keyword":"金属玻璃","originalKeyword":"金属玻璃"},{"id":"ca2995df-0653-4934-9f45-e3f9cc70d07b","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"8e655775-f83f-4f94-9e7f-8f00710ef030","keyword":"脉冲小孔喷射法","originalKeyword":"脉冲小孔喷射法"},{"id":"26c622b2-f4a6-4691-8c5d-1dd76be226c0","keyword":"临界冷却速率","originalKeyword":"临界冷却速率"}],"language":"zh","publisherId":"wjclxb201208013","title":"球形铁基金属玻璃单分散粒子的制备及评价","volume":"27","year":"2012"},{"abstractinfo":"对航空用铁基金属陶瓷摩擦材料的配方设计、制造工艺、对偶件选择及性能等进行了论述.","authors":[{"authorName":"王秀飞","id":"2f1ca4ff-fbc7-4242-82a6-0cbf6d3268d8","originalAuthorName":"王秀飞"},{"authorName":"李东生","id":"3b25fe7e-ab6b-4bda-be7f-91ddb81e8580","originalAuthorName":"李东生"}],"doi":"10.3969/j.issn.1001-4381.1999.08.009","fpage":"27","id":"ad96c947-d8c8-4487-a745-2ad5227fb9e6","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"651ab5b8-7bd8-4192-9119-2816b2da3a19","keyword":"摩擦副","originalKeyword":"摩擦副"},{"id":"9fb680e0-baa9-4e28-995c-63206a1505b7","keyword":"金属陶瓷摩擦材料","originalKeyword":"金属陶瓷摩擦材料"}],"language":"zh","publisherId":"clgc199908009","title":"航空用铁基金属陶瓷摩擦材料","volume":"","year":"1999"},{"abstractinfo":"采用粉末冶金法制备低温陶瓷/铁基金属结合剂.结合材料电子万能试验机、SEM、XRD等检测手段,研究了烧结温度对低温陶瓷/铁基金属结合剂性能与结构的影响.结果表明:当热压烧结温度为740 ℃时,低温陶瓷/铁基金属结合剂具有最佳的力学性能(抗折强度206 MPa,冲击强度6.4 kJ/m2);温度升高促进了低温陶瓷与铁基结合剂界面之间元素的相互渗透,铁基金属结合剂与低温陶瓷达到最佳的机械嵌合,提高结合剂强度.","authors":[{"authorName":"李广锋","id":"0388b1b9-f88a-4e5c-90a2-c71dc2b6fc82","originalAuthorName":"李广锋"},{"authorName":"侯永改","id":"7626b493-4dcd-40a0-a667-1517c57315ea","originalAuthorName":"侯永改"},{"authorName":"高元","id":"70678665-ddbb-40aa-90e0-d3c2ddad611b","originalAuthorName":"高元"},{"authorName":"李文凤","id":"71c51e0c-9174-400a-89e7-4cbf26f7ceb0","originalAuthorName":"李文凤"},{"authorName":"黄庆飞","id":"c5879e7f-5708-4fd8-ba48-c2147ea0314e","originalAuthorName":"黄庆飞"},{"authorName":"丁志静","id":"a55c6aaf-9351-4c7e-a531-1c9aecb29ecf","originalAuthorName":"丁志静"}],"doi":"","fpage":"717","id":"1fa6ff03-6cd6-4306-8dfe-ca0423a17ef8","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"5a820cff-92a6-4101-a5f1-5867448e07c4","keyword":"烧结温度","originalKeyword":"烧结温度"},{"id":"f545862e-67f6-46a3-ae59-195232557625","keyword":"陶瓷/铁基金属结合剂","originalKeyword":"陶瓷/铁基金属结合剂"},{"id":"1c7aec54-f1a8-4103-b734-f868727a4fdd","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"a0ee755b-1897-4fb8-b8f2-724ac53d0d0f","keyword":"界面结构","originalKeyword":"界面结构"}],"language":"zh","publisherId":"rgjtxb98201704026","title":"温度对陶瓷/铁基金属结合剂性能与结构的影响","volume":"46","year":"2017"},{"abstractinfo":"相对于晶态镁合金,镁基金属玻璃因其高强度、耐腐蚀性等特性,近年来引起了人们的普遍关注.然而它较低的玻璃形成能力及室温脆性却是其走向工业应用的瓶颈,因此该领域的研究主要集中于通过成分设计、添加第二相等方法来提高其玻璃形成能力和塑性.综述了其最新研究进展并提出了当前的研究重点.","authors":[{"authorName":"许春霞","id":"d0b92889-a5f6-48ce-8cce-70a5d144012c","originalAuthorName":"许春霞"},{"authorName":"潘复生","id":"dc9c5b53-a5a8-4843-92bb-cedd8e912656","originalAuthorName":"潘复生"},{"authorName":"王敬丰","id":"b3b9c191-bc97-4042-8261-24ff98638b92","originalAuthorName":"王敬丰"}],"doi":"","fpage":"67","id":"61efa954-928d-412f-99cf-2ceeec8ea4c3","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"dc30b98f-12d4-4f49-9589-7272a9a0944b","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"9cd949fc-0d18-45a0-a122-ba8c13e45261","keyword":"非晶态","originalKeyword":"非晶态"},{"id":"7aae37bc-0ef2-47c8-933b-ebbf17aeb883","keyword":"合金成分","originalKeyword":"合金成分"},{"id":"9505621a-19a4-4334-bbb1-0611fb484faf","keyword":"玻璃形成能力","originalKeyword":"玻璃形成能力"},{"id":"5d6e5c44-e986-402b-94e8-9c0a88fb6657","keyword":"塑性","originalKeyword":"塑性"}],"language":"zh","publisherId":"cldb200707018","title":"镁基金属玻璃的形成能力及塑性研究进展","volume":"21","year":"2007"},{"abstractinfo":"对低碳钢表面进行等离子弧堆焊外加交流脉冲纵向磁场,研究了交流脉冲磁场占空比对铁基金属组织及性能的影响.应用光学金相、X射线衍射、显微硬度和湿砂橡胶轮磨损试验等方法,系统分析了堆焊层硬度、耐磨性的微观组织.结果表明,外加纵向交流脉冲磁场可以有效地改善堆焊层金属的结晶形态,细化晶粒,施加适当的交流脉冲磁场占空比能够获得最佳的电磁搅拌效果,从而增加铁基金属中硬质相的数量,控制硬质相的生长方向,提高堆焊层金属的硬度和耐磨性.","authors":[{"authorName":"刘政军","id":"74418e99-c43c-42e2-84b0-0b93a256de89","originalAuthorName":"刘政军"},{"authorName":"赵倩","id":"ec330060-2caf-4be2-b20d-17d7bac3d043","originalAuthorName":"赵倩"},{"authorName":"邵大伟","id":"aab9c62c-f5cc-4603-ae80-fc77fd41e267","originalAuthorName":"邵大伟"},{"authorName":"杨阳","id":"cb763e31-52ba-4edf-b2ac-1a6a411c0568","originalAuthorName":"杨阳"}],"doi":"","fpage":"68","id":"6fcc563a-7a9d-4f00-9ef2-7308bb0b34cd","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"f9bc8480-1aa2-49eb-bbc6-8ffa936eac02","keyword":"铁基合金","originalKeyword":"铁基合金"},{"id":"47f5e9a3-a2d9-46d5-9aef-ea1f1fa4e5d8","keyword":"硬质相","originalKeyword":"硬质相"},{"id":"4a3ad89d-22a0-4d64-84ad-66170cfba8a5","keyword":"占空比","originalKeyword":"占空比"},{"id":"93d28491-6dbf-4933-8122-46d4bd690d2f","keyword":"电磁搅拌","originalKeyword":"电磁搅拌"},{"id":"8d5f0969-beb6-4163-88da-11d80b871069","keyword":"交流脉冲磁场","originalKeyword":"交流脉冲磁场"},{"id":"ec688e3c-8c28-42d4-a1ad-d974fc4d0712","keyword":"硬度","originalKeyword":"硬度"},{"id":"dde84fa2-5253-4a18-809e-ff7989a3c118","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"clbh200901021","title":"脉冲磁场占空比对铁基金属组织硬度及耐磨性的影响","volume":"42","year":"2009"},{"abstractinfo":"通过单辊急冷法和铜模铸造法制备出新型Ti基金属玻璃Ti53Cu27Ni12Sc3Al7Si3B1.用DSC、DTA分析其热稳定性,XRD分析晶化前后相组成.结果表明:用铜模铸造法可以制备出最大直径为2mm的完全玻璃相棒材,其Tg、Tx、⊿Tx分别为729K、765K和36K,具有较高热稳定性.力学性能测试表明其具有较高的力学性能,压缩断裂强度、弹性模量和压缩塑性变形量分别为2325MPa、118GPa和1.6%.具有明显的弹塑性变形阶段.","authors":[{"authorName":"夏明许","id":"a1bbe929-fa15-4d75-9793-61af60e2ea24","originalAuthorName":"夏明许"},{"authorName":"郑红星","id":"024bd101-4829-4431-aca6-0e4ad65034b4","originalAuthorName":"郑红星"},{"authorName":"李建国","id":"c22d75f5-f06e-470b-805d-2a11f2b0081f","originalAuthorName":"李建国"}],"doi":"","fpage":"2249","id":"f5a72cca-20ac-4685-8260-86df590d02d3","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e3528163-f3c8-4f35-969e-f96b7aee6ef6","keyword":"CMF测量管材料","originalKeyword":"CMF测量管材料"},{"id":"b0606604-f7a3-4128-9b54-976f1fee1d39","keyword":"Ti基金属玻璃","originalKeyword":"Ti基金属玻璃"},{"id":"6ea82807-5507-4680-a181-04982e508e50","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"27982036-9f03-4662-98b6-12f365739237","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gncl2004z1625","title":"新型Ti基金属玻璃CMF测量管材料的制备","volume":"35","year":"2004"},{"abstractinfo":"研制一种含21.4wt%Al的铁铝基金属间化合物,结合X射线衍射(XRD)、扫描电镜(SEM)及能谱分析(EDS)等手段对铁铝基金属间化合物1250℃的抗氧化性能进行分析和研究.结果表明,21.4%Al铁铝基金属间化合物的铸态组织为FeAl相,在1250℃下的氧化增重符合抛物线规律,氧化膜只有一层为Al2O3膜,与基材结合得很紧密,不易剥落,保护了基材,使基材在1250℃下呈现完全抗氧化性,成分设计合理.","authors":[{"authorName":"刘俊友","id":"f0ae2404-41fe-4ddc-b1a9-e708dd38350d","originalAuthorName":"刘俊友"},{"authorName":"刘杰","id":"4a5df855-c064-451f-8b31-e90f997ca3b2","originalAuthorName":"刘杰"},{"authorName":"邹敦叙","id":"8418c79c-57d8-43be-afe7-4ad1a2eb0bc2","originalAuthorName":"邹敦叙"},{"authorName":"张艺","id":"e7c8756b-aae2-4bba-83d6-25b61f0d4694","originalAuthorName":"张艺"},{"authorName":"景旭冉","id":"990a665a-3158-475e-924c-4709b496311a","originalAuthorName":"景旭冉"}],"doi":"","fpage":"26","id":"6f7bd11e-0488-41ff-84e3-5a676c7598d2","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"618f6164-096a-42e7-8667-7b982fe7f04b","keyword":"铁铝基金属问化合物","originalKeyword":"铁铝基金属问化合物"},{"id":"1990a355-dc87-4ee2-8c8e-52ac62dd145b","keyword":"1250℃","originalKeyword":"1250℃"},{"id":"99f17725-9d1a-4fe8-9dc1-965f96360b45","keyword":"抗氧化","originalKeyword":"抗氧化"},{"id":"a1fc0be2-32d9-4104-a2b0-42a893298a46","keyword":"氧化膜","originalKeyword":"氧化膜"}],"language":"zh","publisherId":"jsrclxb200905007","title":"21.4wt%Al的铁铝基金属间化合物1250℃的抗氧化性能","volume":"30","year":"2009"}],"totalpage":3711,"totalrecord":37107}