欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

基于独立成分分析的冷轧带钢表面缺陷识别

段志娟,周新星,陈分雄,孙林

钢铁研究学报

为了提高冷轧带钢表面缺陷识别率,提出基于独立成分分析(ICA)的缺陷图像特征提取方法。通过ICA建立缺陷图像的统计生成模型,从缺陷库中自适应地估计ICA基向量,将缺陷图像向基向量张成的空间投影,从而将图像变换到ICA域,图像在ICA域内的表示即为相应的特征向量。这种特征元素之间统计独立,是图像的稀疏编码。试验表明,本方法提取的特征优于常用的几何、纹理、不变矩特征,缺陷识别率较现有方法得到了提高。

关键词: 带钢表面缺陷 , independent component analysis (ICA) , sparse coding , feature extraction , defect recognition

基于遗传算法的带钢表面缺陷特征降维优化选择

汤勃,孔建益,王兴东,侯宇

钢铁研究学报

针对带钢表面的划痕、黑斑、翘皮、辊印、褶皱和压印6种典型缺陷,提取了样本图像的灰度、纹理和几何形状特征等32维特征向量。基于遗传算法对32维特征向量进行降维优化选择,选择了其中的20维以进行缺陷图像类型的分类。利用BP神经网络对降维前后的6种典型带钢表面缺陷分类进行对比识别,并同主成分降维方法进行了对比,验证了所提取的带钢表面缺陷图像特征及其遗传算法降维的有效性。

关键词: 带钢表面缺陷 , feature extraction , dimensions reduction , recognition and classification

出版年份

刊物分类

相关作者

相关热词