{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对凹槽通道中的流动和换热问题进行了数值模拟. Nu的数值结果与文献已有的激光全息干涉实验结果基本一致,但某些工况与实验结果差别大约达到了20%~30%.数值计算获得的温度场也与文献已有的激光全息干涉实验结果基本一致.流场的数值结果表明,入口第一个突出块上出现了回流,这可以解释为什么第一个突出块的平均Nu较小.当Re=2632时,在最后一个突出块后出现了涡列,所得到的数值结果是振荡的,表明流动与换热在这个参数下出现了自维持振荡,是非稳态的.","authors":[{"authorName":"杨茉","id":"0c381601-19f2-480a-9d43-5b0846319973","originalAuthorName":"杨茉"},{"authorName":"高旭亮","id":"d9d12c99-0a72-49d9-9ec6-e416e599c4ef","originalAuthorName":"高旭亮"},{"authorName":"赵婷","id":"8ef88c2a-4ee8-40eb-b9d1-84bfc4b3c022","originalAuthorName":"赵婷"},{"authorName":"李凌","id":"0e94478c-55c3-45b1-ab29-9c9c046661c1","originalAuthorName":"李凌"},{"authorName":"卢玫","id":"501802b2-2333-4c12-9f65-673ba3faa8bc","originalAuthorName":"卢玫"}],"doi":"","fpage":"138","id":"5fd3945f-0362-42b2-9d83-7a19a9491dd5","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3ed586ec-92c3-457f-b745-f225d36fe037","keyword":"凹槽通道","originalKeyword":"凹槽通道"},{"id":"d19a5f90-1cb8-46ce-ac46-e753907a5953","keyword":"流动和换热","originalKeyword":"流动和换热"},{"id":"382b6bc8-0606-4e71-be88-bf18a1a96211","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200901038","title":"凹槽通道中流动和换热的数值模拟","volume":"30","year":"2009"},{"abstractinfo":"结合对流传热场协同原理分析了微酒窝通道、圆柱面凹槽通道及低肋通道强化传热特点,研究发现酒窝与圆柱面凹槽强化传热主要原因为:1)增加近壁区流体扰动,促进酒窝或凹槽内部流体与主流之间的传热;2)酒窝与凹槽均可扩展传热面积,进而提高总传热量。与低肋通道相比,酒窝与圆柱面凹槽仅对其附近流体的流动产生影响,而对主流流体的流动影响较小,进而阻力增加较少。提出传热量单元性能参数PEC_A作为评价指标,酒窝通道综合性能参数略高于圆柱面凹槽通道,而远高于低肋通道。","authors":[{"authorName":"毕成","id":"003af3bc-c4be-42cf-9354-759b4638877d","originalAuthorName":"毕成"},{"authorName":"唐桂华","id":"a9dd8c48-7c33-4ad3-959b-419ab5bce108","originalAuthorName":"唐桂华"},{"authorName":"陶文铨","id":"7180b59d-31a9-439c-a59c-93e594419af3","originalAuthorName":"陶文铨"}],"doi":"","fpage":"1225","id":"06525434-59fa-4fc8-b2b4-621971eca320","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c9abebaf-51a3-4cd8-8c09-579eec76112d","keyword":"对流传热","originalKeyword":"对流传热"},{"id":"a80d6981-3896-4d7c-a372-78866fae0030","keyword":"场协同原理","originalKeyword":"场协同原理"},{"id":"501ae342-cf5d-455e-806f-8049996d6a23","keyword":"强化传热","originalKeyword":"强化传热"}],"language":"zh","publisherId":"gcrwlxb201207033","title":"微酒窝通道与圆柱面凹槽通道对流传热强化分析","volume":"33","year":"2012"},{"abstractinfo":"通过平面镀铜和凹槽镀铜试验,讨论了不同工艺条件下镀铜沉积速度和副反应对镀层性质的影响;并对化学镀铜液中各种络合剂和添加剂进行电化学测试分析,选择合适的络合剂和添加剂以及相应的条件,避免凹槽镀铜中空洞或缝隙产生.","authors":[{"authorName":"秦毅红","id":"3697d5cb-0ab5-46aa-b003-e98868a82faa","originalAuthorName":"秦毅红"},{"authorName":"韦顺文","id":"0bf5459a-8f4a-4a15-9bfd-e70ec6b76982","originalAuthorName":"韦顺文"},{"authorName":"石西昌","id":"ca2e7ba6-2867-43cc-824c-258cf0ef2952","originalAuthorName":"石西昌"},{"authorName":"王赛","id":"2aa13186-ff3c-412a-a3d4-9376f543aba5","originalAuthorName":"王赛"},{"authorName":"李竹英","id":"ae086616-e03b-48e7-83e2-7f03e21c0322","originalAuthorName":"李竹英"}],"doi":"10.3969/j.issn.1005-748X.2003.02.007","fpage":"66","id":"70e9a5c2-da75-4beb-bf8f-371229288a9d","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"46e5d18c-8b42-45b9-823e-817b47491a9d","keyword":"铜","originalKeyword":"铜"},{"id":"d1795f97-f427-4ad6-94f4-c1c2a3b35fd5","keyword":"凹槽","originalKeyword":"凹槽"},{"id":"0ef97f2b-3575-488e-97ea-dcea2959938d","keyword":"化学镀","originalKeyword":"化学镀"}],"language":"zh","publisherId":"fsyfh200302007","title":"凹槽中化学镀铜","volume":"24","year":"2003"},{"abstractinfo":"在低速风洞实验台,对具有不同深凹槽结构平面叶栅在不同间隙尺度条件下的流动特性进行了实验研究.实验采用五孔气动探针和高灵敏度及高精度的压力扫描阀测量了叶栅出口截面的气动参数,对比分析了总压损失的展向分布,并在叶栅端壁和叶片表面进行墨迹显示.结果表明,深凹槽式叶顶结构应用于本文研究的叶栅上是可行的.深凹槽尾缘开口有利于降低叶顶间隙泄漏损失,凹槽前缘开口对前缘附近局部流动产生一定影响.对整个流动通道涡生成影响不如泄漏流作用强,并且尾缘开口与前缘开口开度的匹配对叶顶间隙泄漏损失有明显的影响.","authors":[{"authorName":"崔涛","id":"1163dd4c-7980-42cc-b971-64ddc79aac1d","originalAuthorName":"崔涛"},{"authorName":"陈绍文","id":"174a4bbe-d4af-4964-b359-00933bc8350a","originalAuthorName":"陈绍文"},{"authorName":"周治华","id":"1ce52164-ef21-4595-bfc2-9ee73d76d352","originalAuthorName":"周治华"},{"authorName":"王晋声","id":"86a05e01-1e02-4cd6-8e0f-7f90adbc8576","originalAuthorName":"王晋声"},{"authorName":"王松涛","id":"4bbd3ee4-0cb8-4d11-bbe9-288642a2aeb5","originalAuthorName":"王松涛"},{"authorName":"王仲奇","id":"2a6fbebc-480f-4747-82dc-061509817084","originalAuthorName":"王仲奇"}],"doi":"","fpage":"1902","id":"5d67c348-98f7-4eab-bb02-fcca14638cc6","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"63b0e669-39cf-43e6-91cf-b2347036f0c9","keyword":"深凹槽","originalKeyword":"深凹槽"},{"id":"4063be47-cf6d-4a1f-8c0f-a4eb33696569","keyword":"间隙间隙流动","originalKeyword":"间隙间隙流动"},{"id":"61b83a03-118d-4a40-8250-e58cd663b1a6","keyword":"涡轮","originalKeyword":"涡轮"},{"id":"32eb9700-cd31-44dd-b35a-a9a2cca641b6","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb201509012","title":"深凹槽式涡轮叶顶间隙泄漏直列叶栅实验研究","volume":"36","year":"2015"},{"abstractinfo":"应用数值方法和标准κ-ω紊流模型,研究了凹槽对燃气轮机透平动叶顶部间隙内流动与换热的影响,考虑了平顶部及4种不同深度凹槽的影响.结果显示,在凹槽内存在复杂的流动结构,不同凹槽深度时呈现出不同的涡结构.在凹槽深度小于3%相对叶高时,泄漏流动随凹槽深度的增加而减少,而高于3%时泄漏流量则几乎不变.凹槽的存在使得凹槽底部局部区域换热率较平顶部时升高,但总体来说,叶顶平均表面换热率随凹槽深度的增加而降低.","authors":[{"authorName":"杨佃亮","id":"4cd3b3e3-a229-4d00-9acd-e7ffbe7a0207","originalAuthorName":"杨佃亮"},{"authorName":"丰镇平","id":"7434d678-8d32-43af-a67c-2ce23f5a6051","originalAuthorName":"丰镇平"}],"doi":"","fpage":"936","id":"c39e6c45-1da3-43f2-987c-891cea69b5c3","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9ed79485-5857-408c-ae59-82f19c70b327","keyword":"间隙流","originalKeyword":"间隙流"},{"id":"e3cde4d1-9468-473e-9614-4fc4caafcf13","keyword":"顶部换热","originalKeyword":"顶部换热"},{"id":"d4198e4e-2223-4219-a75e-cc7f8d3b8413","keyword":"轴流透平","originalKeyword":"轴流透平"},{"id":"f946fbde-6d35-42ed-a795-e3cdf6a7ec2b","keyword":"凹槽状叶顶","originalKeyword":"凹槽状叶顶"}],"language":"zh","publisherId":"gcrwlxb200706011","title":"凹槽对动叶顶部流动和换热的影响","volume":"28","year":"2007"},{"abstractinfo":"为了确定成形极限图(FLD)理论的凹槽模型中合理的凹槽角度和凹槽深度比,以新型淬火-分配-回火(Q-P-T)钢为研究对象,分别制备了凹槽深度比为5%,10%,15%,25%和凹槽角度为45°,60°,90°的拉伸试样,经单轴拉伸试验后,采用不同的本构模型对拉伸曲线进行拟合,随后利用Swift-Hill公式对单轴拉伸条件下的极限应变值进行了计算,并将理论预测值与经验数据进行比较.结果表明:合适的FLD理论计算应取凹槽深度比为5%左右,凹槽角度等于或小于45°;单轴拉伸条件下极限应变值的计算方法为构成完整FLD的其它加载方式下的极限应变理论预测奠定了基础.","authors":[{"authorName":"龚俊杰","id":"7897f000-338e-40f9-b5cb-e2d8367f6b7c","originalAuthorName":"龚俊杰"},{"authorName":"郝庆国","id":"efe7d611-2a20-4188-86db-419291afac85","originalAuthorName":"郝庆国"},{"authorName":"左训伟","id":"4b0a5a36-22e1-4f21-9ac5-9b20f403dcc8","originalAuthorName":"左训伟"},{"authorName":"郭正洪","id":"a7037706-2d5a-41f3-af14-86444a6d2e55","originalAuthorName":"郭正洪"},{"authorName":"陈乃录","id":"75209d04-d59a-4581-b4d1-a06326fc9702","originalAuthorName":"陈乃录"},{"authorName":"戎咏华","id":"a2fb1ecf-1b66-490c-aafa-e16f3698f4dc","originalAuthorName":"戎咏华"}],"doi":"10.11973/jxgccl201508003","fpage":"16","id":"f31fede4-c636-4e45-b090-60557cf1c770","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"a8d96fc7-31b8-4c38-9602-a92d11abe2d6","keyword":"淬火-分配-回火钢","originalKeyword":"淬火-分配-回火钢"},{"id":"16501650-645c-4982-be26-7940386e996d","keyword":"成形极限图","originalKeyword":"成形极限图"},{"id":"4843e65a-2b88-4730-9669-80d223af4d9c","keyword":"凹槽模型","originalKeyword":"凹槽模型"},{"id":"a258d6c4-ba1d-4b53-a403-b31d97f35262","keyword":"单轴拉伸","originalKeyword":"单轴拉伸"}],"language":"zh","publisherId":"jxgccl201508003","title":"表面凹槽形态对Q-P-T钢成形能力预测的影响","volume":"39","year":"2015"},{"abstractinfo":"应用数值方法研究了燃气透平中凹槽状叶顶非定常泄漏流动和传热问题.计算采用GE-E3发动机高压透平第一级动叶,叶顶间隙高度取1%叶高,叶顶凹槽深度取2%叶高.通过施加非定常边界条件模拟上游静叶尾迹,分析了非定常流动对动叶叶顶传热的影响.结果表明,叶顶附近的流场波动主要出现在叶顶前部及尾缘附近.叶顶凹槽底部传热系数变化主要出现在凹槽前部.定常计算获得的叶顶面积平均传热系数与非定常计算的时均结果相差很小.","authors":[{"authorName":"杨佃亮","id":"680d8b0d-4bf7-4307-ba18-24fdf718e211","originalAuthorName":"杨佃亮"},{"authorName":"丰镇平","id":"6d405c8d-dbb2-4954-a566-a7c91c99dd23","originalAuthorName":"丰镇平"},{"authorName":"余小兵","id":"03a0477f-f305-4c1d-b51c-534c47d6fde1","originalAuthorName":"余小兵"}],"doi":"","fpage":"591","id":"de9e494c-e844-4b2b-9887-2543c9514da9","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9ab9bad0-99b3-4e31-b059-b3b40b4cf7d2","keyword":"燃气透平","originalKeyword":"燃气透平"},{"id":"0761e89b-988d-444f-a816-b31569baeb17","keyword":"非定常流动","originalKeyword":"非定常流动"},{"id":"e8cb5b65-10c6-4b83-828c-2c698220f29d","keyword":"凹槽叶顶","originalKeyword":"凹槽叶顶"},{"id":"a0614f2e-d3f5-411a-a86e-385f7b3818b0","keyword":"间隙泄漏流","originalKeyword":"间隙泄漏流"},{"id":"d472e40a-c4f4-46d9-ad50-215ed7871474","keyword":"叶顶传热","originalKeyword":"叶顶传热"}],"language":"zh","publisherId":"gcrwlxb200904013","title":"凹槽叶顶非定常间隙泄漏流动和传热的数值研究","volume":"30","year":"2009"},{"abstractinfo":"本文采用单方程S—A湍流模型计算了尾缘襟翼与主体翼型连接处的凹槽对二维翼型气动特性及流场的影响。选用带有30%弦长固定偏斜20°角度尾缘襟翼的NACA0015翼型作为研究对象,分析了流场的相关特性。数值计算结果表明:凹槽对于带有尾缘襟翼的二维翼型气动特性有一定影响,在负攻角及较小正攻角时,减小翼型升力系数;随着攻角增大,出现驻涡或周期性脱落涡,在计算及实际应用中不能忽略该部分细小几何结构的影响;攻角继续增大,分离区覆盖连接处后,凹槽对流场基本没有影响。","authors":[{"authorName":"李传峰","id":"97b761af-e03b-41e4-b5f3-eb594fb90ee7","originalAuthorName":"李传峰"},{"authorName":"徐宇","id":"1c3934f1-8476-4e40-8cc6-35a97cb8b061","originalAuthorName":"徐宇"},{"authorName":"徐建中","id":"f2f6a57f-73c9-4ac8-a22c-3f3df034c6de","originalAuthorName":"徐建中"}],"doi":"","fpage":"1851","id":"24f356c1-e6cc-43d1-9020-72fb2541eaed","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a4be0c9f-24fc-4b04-8bfe-90dae7c386fe","keyword":"凹槽","originalKeyword":"凹槽"},{"id":"ad01455c-4d2d-4761-afca-3fc257d95fff","keyword":"尾缘襟翼","originalKeyword":"尾缘襟翼"},{"id":"33210c9a-96da-4d40-8ad7-98bceba020eb","keyword":"智能叶片控制","originalKeyword":"智能叶片控制"}],"language":"zh","publisherId":"gcrwlxb201111013","title":"凹槽对风力机叶片尾缘襟翼性能的影响","volume":"32","year":"2011"},{"abstractinfo":"目的:研究不同靶基距对高功率脉冲磁控溅射(HIPIMS)在凹槽表面制备钒膜微观结构和膜厚均匀性的影响,实现凹槽表面高膜层致密性和均匀性的钒膜制备。方法采用HIPIMS方法制备钒膜,在其他工艺参数不变的前提下,探讨不同靶基距对凹槽表面钒膜相结构、表面形貌及表面粗糙度、膜层厚度均匀性的影响。采用 XRD、AFM及 SEM 等观测钒膜的表面形貌及生长特征。结果随着靶基距的增加,V(111)晶面衍射峰强度逐渐降低。当靶基距为12 cm时,钒膜膜层表面粗糙度最小,为0.434 nm。相比直流磁控溅射(DCMS),采用HIPIMS制备的钒膜呈现出致密的膜层结构且柱状晶晶界不清晰。采用HIPIMS和DCMS方法制备钒膜时的沉积速率均随靶基距的增加而减少。当靶基距为8 cm时,采用HIPIMS方法在凹槽表面制备的钒膜均匀性最佳。结论采用HIPIMS方法凹槽表面钒膜生长的择优取向、表面形貌、沉积速率及膜厚均匀性均有影响。在相同的靶基距下,采用 HIPIMS 获得的钒膜膜厚均匀性优于DCMS方法。","authors":[{"authorName":"李春伟","id":"105b6727-4d95-426d-96c5-adc2f1418e17","originalAuthorName":"李春伟"},{"authorName":"田修波","id":"8675f56f-351b-43a6-8302-54084963d57f","originalAuthorName":"田修波"},{"authorName":"巩春志","id":"7b51f4c1-4f03-4807-b923-1221a7c1e0a8","originalAuthorName":"巩春志"},{"authorName":"许建平","id":"bc6e6efd-5563-48f1-8bc1-06293cb6ecf5","originalAuthorName":"许建平"}],"doi":"10.16490/j.cnki.issn.1001-3660.2016.07.021","fpage":"122","id":"ef90d315-79c6-4d5e-8053-e093898ebab8","issue":"7","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"a379ebc0-c915-48f1-a105-50a4fbf257a9","keyword":"高功率脉冲磁控溅射","originalKeyword":"高功率脉冲磁控溅射"},{"id":"ac7b3f62-e3a8-4615-bbc7-b2ae57134ecc","keyword":"靶基距","originalKeyword":"靶基距"},{"id":"e7afe6ef-659a-4f48-a2d9-6d461f7ab61b","keyword":"钒膜","originalKeyword":"钒膜"},{"id":"c2fb8e40-c475-42ca-8ead-c41952656dbb","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"ce9f980f-73b3-4148-81ff-e64dd01d8a25","keyword":"厚度均匀性","originalKeyword":"厚度均匀性"}],"language":"zh","publisherId":"bmjs201607021","title":"不同靶基距下凹槽表面HIPIMS法制备钒膜的微观结构及膜厚均匀性","volume":"45","year":"2016"},{"abstractinfo":"高功率脉冲磁控溅射是一种制备高质量薄膜的新兴方法.在相同的平均功率下分别采用HPPMS技术和传统DCMS技术在凹槽工件表面制备了钒薄膜.对比研究了两种方法下的等离子体组成、薄膜的晶体结构、表面形貌及膜层厚度的异同.结果表明:HPPMS产生的等离子体包括Ar(1+),v(0)和相当数量的v(1+);而DCMS放电时的等离子体包括Ar(1+),V(0)和极少量的v(1+).两种方法制备的凹槽不同位置处钒薄膜相结构的变化规律大致相似.HPPMS制备的钒薄膜表面致密、平整;而DCMS制备的膜层表面出现非常锐利的尖峰且高度很高,凹槽不同位置表面状态表现出较大差异.DCMS制备的钒薄膜截面表现为疏松的柱状晶结构;而HPPMS制备的膜层也具有轻微的柱状晶结构,但结构更为致密.HPPMS时的膜层厚度小于DCMS时的膜层厚度.与凹槽工件的上表面相比,DCMS时侧壁膜层的厚度为上表面的32%,底部膜层的厚度为上表面的55%.而HPPMS时侧壁的厚度为上表面的35%,底部膜层的厚度为上表面的69%.采用HPPMS方法在凹槽工件表面获得的膜层厚度整体上表现出更好的均匀性.","authors":[{"authorName":"李春伟","id":"898009aa-d350-4cad-ac65-125debd20b4c","originalAuthorName":"李春伟"},{"authorName":"田修波","id":"3d05125c-7975-4521-929d-9dca7150fc43","originalAuthorName":"田修波"},{"authorName":"刘天伟","id":"f4e0508c-5774-43d8-be95-40921dfff8d8","originalAuthorName":"刘天伟"},{"authorName":"秦建伟","id":"4a5fdee1-cb53-493a-a3a9-deb11880771b","originalAuthorName":"秦建伟"},{"authorName":"杨晶晶","id":"79238ee2-effb-4a05-b279-5b5d57c3b41a","originalAuthorName":"杨晶晶"},{"authorName":"巩春志","id":"9e568e62-663e-4bba-9263-37dda7b3fef5","originalAuthorName":"巩春志"},{"authorName":"杨士勤","id":"2a25f1b4-9d25-4442-b7e3-a077e9e11b21","originalAuthorName":"杨士勤"}],"doi":"","fpage":"2437","id":"c01f07ad-e8df-422f-86ea-fdd416ce70aa","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"7e68eb29-6c76-46ae-a87f-4f04532c96fb","keyword":"高功率脉冲磁控溅射","originalKeyword":"高功率脉冲磁控溅射"},{"id":"2d2adfc8-688c-47cd-8984-f3f60c10b5bd","keyword":"凹槽工件","originalKeyword":"凹槽工件"},{"id":"b8a13959-0ca6-4b85-ae31-86aac8f90bdb","keyword":"钒薄膜","originalKeyword":"钒薄膜"},{"id":"32e75f59-8815-487e-8d97-ab855c7a3f21","keyword":"均匀性","originalKeyword":"均匀性"},{"id":"e697f1f0-cfbc-4847-b873-0fbfc8a11e43","keyword":"膜厚","originalKeyword":"膜厚"}],"language":"zh","publisherId":"xyjsclygc201312004","title":"凹槽工件表面常规磁控与高功率脉冲磁控溅射沉积钒薄膜的研究","volume":"42","year":"2013"}],"totalpage":166,"totalrecord":1653}