张仲
,
周波
,
王培吉
,
陶冶薇
量子电子学报
doi:10.3969/j.issn.1007-5461.2009.04.004
耦合谐振子是量子光学中的重要问题之一,许多实际物理问题的解决都依赖于耦合谐振子的模型,因此研究耦合谐振子求解的简便方法显得十分必要.运用数学上二次型正交化理论构造了一个形式上的变换矩阵,使既有坐标耦合又有动量耦合的各向异性n维耦合谐振子的Hamiltonian对角化,求出了其本征值.并应用此方法求解了三维耦合谐振子的本征值,验证了该方法的正确性.由于该方法不需要求出变换矩阵的具体形式,使得运用此方法求解具有对称形式的Hamiltonian的本征值问题变得简单、易计算出结果,该方法更具有普遍性,是一种十分有效的代数方法.
关键词:
量子光学
,
耦合谐振子
,
二次型理论
,
能量本征值
,
对角化
刘汉俊
,
逯怀新
量子电子学报
doi:10.3969/j.issn.1007-5461.2001.04.009
借助线性量子变换(LQT)理论,对n模玻色和费米子的二次型哈密顿量,我们给出了简洁的对角化形式.并且指出,对于n模玻色子耦合二次型哈密顿量,通过一个负幺正矩阵(它是复辛群SP(2n,c)的元素)可以把它对角化;对n模费米子耦合二次型哈密顿量,通过一个幺正矩阵(它是复费米群F(2n,c)的元素)可以把它对角化.
关键词:
二次型哈密顿量
,
量子变换
,
对角化