{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文在多核环境下,使用OpenMP实现了经典分子动力学模拟程序的并行;同时对分子动力学模拟进行了两项主要的优化:分子排序及运用SIMD指令运算.在4核下获得了4.13倍的计算性能提升,将经典分子动力学模拟模拟规模提高至4000分子×10~7模拟总步数.","authors":[{"authorName":"杨爱贤","id":"3c2e1efc-1515-44a9-a61d-fce7534124f2","originalAuthorName":"杨爱贤"},{"authorName":"吴江涛","id":"65d31ff2-3f49-4c7a-a8ee-1162407fc61f","originalAuthorName":"吴江涛"}],"doi":"","fpage":"1639","id":"66ee22b9-4708-4f6e-9d55-a4d197924f81","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e9d47256-2e21-4846-b7e9-e773ed82bd75","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"69b8a085-20c2-411f-ab5c-dbafb53b12b5","keyword":"OpenMP并行","originalKeyword":"OpenMP并行"},{"id":"20681e0d-e173-49be-a48f-33d4de8ca96f","keyword":"多核","originalKeyword":"多核"}],"language":"zh","publisherId":"gcrwlxb200910006","title":"多核环境下的分子动力学模拟","volume":"30","year":"2009"},{"abstractinfo":"采用分子动力学模拟方法,应用Buckingham经验势模型,模拟纤锌矿相GaN的薄膜晶格生长.研究了GaN薄膜生长的早期阶段的形貌特点、生长规律、表面结构及动力学特性.模拟发现,N原子与Ga原子按照晶格特征吸附在衬底上,作层状分布趋势并且薄膜层从下到上晶态特征逐渐减弱.观察每层沉积原子数、空位比、沉积原子团簇质心高度与沉积原子均方位移随时间的变化规律,发现了随着时间步数增加,原子团簇逐渐达到稳定,在5000步时前3层都达到了较稳定状态,且N原子比Ga原子能更快地找到平衡位置.","authors":[{"authorName":"陈智辉","id":"f3289930-4c1e-4075-b590-ad5e4c667a44","originalAuthorName":"陈智辉"},{"authorName":"俞重远","id":"cf21cf38-f11f-4b18-a418-3ca906bb3219","originalAuthorName":"俞重远"},{"authorName":"芦鹏飞","id":"db11c1d4-4ed6-4c57-ac51-d71650cdf281","originalAuthorName":"芦鹏飞"},{"authorName":"刘玉敏","id":"c26b7887-3a39-43f2-9c98-05cc022f928a","originalAuthorName":"刘玉敏"},{"authorName":"王永钢","id":"7623f3d2-38e4-4388-91d9-14d4cfc38215","originalAuthorName":"王永钢"}],"doi":"","fpage":"2045","id":"7dd0b616-16a4-443d-8dc3-26c839d46d18","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"49a70d11-7936-4ffd-8469-da3b12216fde","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"3bdd4c05-41af-474e-8772-2994c54da895","keyword":"薄膜生长","originalKeyword":"薄膜生长"},{"id":"d390ebff-3e80-42af-8a5e-741286f24125","keyword":"Buckingham势","originalKeyword":"Buckingham势"},{"id":"ea348e29-7ece-4a42-83ab-2b255b55e8d8","keyword":"GaN","originalKeyword":"GaN"}],"language":"zh","publisherId":"gncl200812032","title":"分子动力学方法模拟GaN薄膜生长","volume":"39","year":"2008"},{"abstractinfo":"采用非平衡态分子动力学(NEMD)方法模拟分析了纳米铂(Pt)薄膜的导热性能与脉冲激光作用下的温度响应特性.结果表明,100~500 nm铂薄膜的法向导热系数比体材料值低很多,而且低于其面向导热系数;微米铂薄膜的温度响应时间在纳秒量级;在脉冲加热的初始阶段,有一快速非傅立叶热波沿铂薄膜的厚度方向传递.","authors":[{"authorName":"黄小鹏","id":"be4daff1-fd3d-4583-8b99-9e64c35e52ec","originalAuthorName":"黄小鹏"},{"authorName":"淮秀兰","id":"07458ea5-9e3f-425b-866f-7667ba7c7c63","originalAuthorName":"淮秀兰"},{"authorName":"邹玉","id":"15f1a907-3c16-42f7-98b2-88758e641cfc","originalAuthorName":"邹玉"}],"doi":"","fpage":"1525","id":"5bbb70d2-10b4-4732-af8d-15884f53ac27","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"31ecacbd-0303-4a0e-9100-eaf3682d6b3e","keyword":"导热系数","originalKeyword":"导热系数"},{"id":"6252fd2e-7dd7-41fa-9a69-79e42a26604e","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"b86ebf66-0ee3-419e-af6e-87b6d7d97a4a","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"4ea396e4-320b-4f49-865d-e01b443cc014","keyword":"尺度效应","originalKeyword":"尺度效应"}],"language":"zh","publisherId":"gcrwlxb200909024","title":"铂薄膜导热特性的分子动力学模拟","volume":"30","year":"2009"},{"abstractinfo":"介绍了分子动力学模拟的基本原理和算法,综述了裂纹萌生和扩展的分子动力学模拟的国内外研究进展情况,并探讨了裂纹萌生和扩展的分子动力学模拟发展方向. ","authors":[{"authorName":"单德彬","id":"135ff908-776b-452c-aee9-99bf7514f039","originalAuthorName":"单德彬"},{"authorName":"袁林","id":"5b9d129b-2b88-4f0a-9f04-7a0bba43ec6f","originalAuthorName":"袁林"},{"authorName":"郭斌","id":"b4f3c209-b898-4b80-99b2-1fa00006fc71","originalAuthorName":"郭斌"}],"doi":"10.3969/j.issn.1004-244X.2003.03.019","fpage":"63","id":"d9805067-bc8c-4c58-bd22-974957c302c6","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"f9780057-de91-426d-aefd-1b2b2af8f8ee","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"50d7a64c-3b6b-430b-9b11-4be7aa2f02e9","keyword":"萌生","originalKeyword":"萌生"},{"id":"d8891833-32cd-4cdb-a470-a9c970505a98","keyword":"扩展","originalKeyword":"扩展"},{"id":"6ff5ae64-5e6f-44ad-ba4a-6e8bf8fd5ddf","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"}],"language":"zh","publisherId":"bqclkxygc200303019","title":"分子动力学模拟在裂纹萌生和扩展中的研究进展","volume":"26","year":"2003"},{"abstractinfo":"分子动力学模拟是一种通过经典力学建立分子体系模型,利用数值求解分子体系运动方程,对分子分子体系结构与性质进行研究的计算机模拟方法.分子动力学作为一种应用非常广泛的分子模拟技术,在物理、化学、生物、材料、医学等各种牵涉到微观世界的学科中,都起到了非常重要的作用.目前,分子动力学已被应用于模拟表面工程中表面涂层的沉积过程及其性质、表面改性过程、薄膜应力状态以及表面裂纹的萌生与扩展等方面.综述了分子动力学模拟技术的发展,介绍了分子动力学的基本原理及算法、原子间势函数的选取以及边界条件的选取,并且综述了分子动力学模拟技术在表面工程中的应用及其进一步的研究方向.","authors":[{"authorName":"王泽","id":"ede9b3a7-330c-47b2-aca2-8cf29e7abc36","originalAuthorName":"王泽"},{"authorName":"李国禄","id":"81fc649e-0572-45f3-a043-08650e36a4a7","originalAuthorName":"李国禄"},{"authorName":"王海斗","id":"3e6d6b7b-e45d-4770-a0d7-522706103f48","originalAuthorName":"王海斗"},{"authorName":"徐滨士","id":"40e52676-7b0b-498e-bb65-013ef1a801e3","originalAuthorName":"徐滨士"},{"authorName":"康嘉杰","id":"3f9541f9-4298-4a39-9296-1c77be6702b4","originalAuthorName":"康嘉杰"}],"doi":"10.11896/j.issn.1005-023X.2014.17.016","fpage":"91","id":"19a34a26-8df7-4e0a-a9b8-3468924e6e9a","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5b652d6e-b7ea-4132-84cc-2c5e8e2deb88","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"14ba1850-5516-497a-8e31-7ded0ec2a80d","keyword":"原子间作用势","originalKeyword":"原子间作用势"},{"id":"fcb9351c-9203-4ff3-843c-806f15f5d553","keyword":"表面涂覆","originalKeyword":"表面涂覆"},{"id":"bd1ec783-ccdc-428b-bab0-501bdd070432","keyword":"表面改性","originalKeyword":"表面改性"}],"language":"zh","publisherId":"cldb201417016","title":"分子动力学模拟及其在表面工程中的应用现状","volume":"28","year":"2014"},{"abstractinfo":"采用分子动力学模拟方法研究了液氮和水爆发沸腾中均相形核能量转换过程,通过计算系统势能变化分析了热流量和高能分子团尺寸对形核过程能量转换的影响,并分析了水和液氮爆发沸腾形核区别.结果表明,热流量与高能分子团半径的增加都会使系统中的势能转化增加.在模拟后期,水的势能转化趋于平稳,液氮势能转化逐渐升高,这与液氮与水分子之间的相互作用有关.","authors":[{"authorName":"邹玉","id":"601f0b65-0881-4d37-b403-8e9feac220af","originalAuthorName":"邹玉"},{"authorName":"淮秀兰","id":"8f111236-de18-4fa8-bea4-02749f40a7a5","originalAuthorName":"淮秀兰"},{"authorName":"梁世强","id":"376947e5-a06f-40f1-9223-9661c5c9e5c0","originalAuthorName":"梁世强"}],"doi":"","fpage":"992","id":"6459ffac-d1f2-406d-884e-8b5cd52362b4","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4c86673c-3352-487b-a800-f4910f88a3d9","keyword":"爆发沸腾","originalKeyword":"爆发沸腾"},{"id":"493e0e47-0e79-474d-ba6f-e750958a8b94","keyword":"汽泡形核","originalKeyword":"汽泡形核"},{"id":"4e2c7d17-7b96-4493-8d20-4c5a82455f94","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"}],"language":"zh","publisherId":"gcrwlxb200906024","title":"爆发沸腾形核分子动力学模拟","volume":"30","year":"2009"},{"abstractinfo":"在COMPASS(Condensed-phase optimized molecular potentials for atomistic simulation studies)力场下,对以氨(Amine)、丁二胺(Butanediamine)为核的1代~3代(1G~3G)石墨/树状大分子纳米复合材料进行了分子动力学模拟(Molecular dynamics simulation).介绍了复合体系的构建过程及分子动力学模拟细节,从微观构形、能量变化研究了正则系综(恒定的NVT)中6种插层复合物的稳定性及其机理,最后利用径向分布函数(Radial distribution function)对能量变化结果进行了分析.结果表明,当树状大分子体积较小时,石墨层容易弯曲,体系能量较高,导致复合体系不稳定;随着树状大分子代数的增加,石墨层形变减小,体系能量降低,3代时树状大分子体系最稳定.","authors":[{"authorName":"莫尊理","id":"77265c78-08d6-487a-8f01-dc2a497835f5","originalAuthorName":"莫尊理"},{"authorName":"郭瑞斌","id":"d7ebe625-c620-482e-aa2b-309a749ed019","originalAuthorName":"郭瑞斌"},{"authorName":"陈红","id":"626f1095-e592-4290-87a0-6af07d790d5c","originalAuthorName":"陈红"},{"authorName":"孙亚玲","id":"63187f82-4b1e-4f89-a3c5-0acbd058825b","originalAuthorName":"孙亚玲"},{"authorName":"李贺军","id":"accc7530-b4ec-4b24-a52e-5eb91b5ee266","originalAuthorName":"李贺军"}],"doi":"10.3321/j.issn:1000-3851.2007.04.010","fpage":"58","id":"7398bec4-e386-405c-ab6a-2618cde5b62e","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8658c711-15c6-49be-8782-64457a3b36e5","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"aff856b4-fe8e-498e-93c4-24382cd18688","keyword":"树状大分子","originalKeyword":"树状大分子"},{"id":"b1469560-c7dd-487a-97e5-84dee0361dab","keyword":"石墨","originalKeyword":"石墨"},{"id":"a91d74d0-3251-4624-b7e4-4a08e7e5a4af","keyword":"插层复合材料","originalKeyword":"插层复合材料"}],"language":"zh","publisherId":"fhclxb200704010","title":"石墨/树状大分子复合材料的分子动力学模拟","volume":"24","year":"2007"},{"abstractinfo":"本文应用分子动力学模拟方法,讨论了NVE系综中不同初始晶格类型对模拟系统平衡温度和截断半径对模拟系统平衡总能的影响.建立了一种新的固壁加热模型,模拟研究了由铂组成固壁对流体氩快速加热过程.在本文的模拟条件下,由于固壁与液体之间的快速加热作用,固壁与液体之间产生的蒸汽推动液体向上移动,可以明显地观察到Leidenfrost现象的产生.","authors":[{"authorName":"陈俊","id":"20406819-9ea5-40fa-8ff0-9fd431d28554","originalAuthorName":"陈俊"},{"authorName":"刘朝","id":"14ac10b2-1d56-4244-8b27-853a13c75d01","originalAuthorName":"刘朝"},{"authorName":"刘方","id":"b14eb15a-aea6-4baa-8b74-57defb5d8c12","originalAuthorName":"刘方"},{"authorName":"曾丹苓","id":"cf32da06-79b9-46f4-982a-d8973fbcd324","originalAuthorName":"曾丹苓"}],"doi":"","fpage":"9","id":"72c21922-2657-4678-a11a-62d3b05f8c3b","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0219823d-0cb7-4d62-b8ff-d3cb5a97073e","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"c6fbb69b-a913-4bea-bd39-3d45e584fe93","keyword":"固壁模型","originalKeyword":"固壁模型"},{"id":"623afde6-106a-4b18-9f0b-4b5999fc988c","keyword":"Leidenfrost现象","originalKeyword":"Leidenfrost现象"}],"language":"zh","publisherId":"gcrwlxb200701003","title":"固壁加热的分子动力学模拟研究","volume":"28","year":"2007"},{"abstractinfo":"纳米流体的导热系数相对于基础流体而言有了显著提高,然而这种现象却无法用现有理论进行解释.应用平衡分子动力学方法对纳米流体的导热系数进行了模拟,并研究了纳米颗粒表面类似于固体的液体吸附层的存在和特性以及其对纳米流体导热能力的影响,在此基础上进一步对纳米流体导热性能显著提高的微观机理进行了探讨.模拟结果表明由于固体分子较强的吸引力,一部分液体分子被吸附在固体颗粒表面形成一个薄层,薄层内分子的排列结构不同于纯液体的分子排列结构,导热性能也优于基础流体,从而使得纳米流体的导热系数有了显著提高.最后对纳米颗粒表面液体薄层的厚度进行了定量计算.","authors":[{"authorName":"李凌","id":"6cb4041a-0ba8-401f-881f-9f3217751bfa","originalAuthorName":"李凌"},{"authorName":"郭丽","id":"80d01277-9cdf-4011-910b-7097367271bf","originalAuthorName":"郭丽"},{"authorName":"杨茉","id":"bd450392-53ff-4255-8d76-58f0d898c05e","originalAuthorName":"杨茉"},{"authorName":"卢玫","id":"baa6c5e1-6747-4572-8c7b-4932ab5fbcb3","originalAuthorName":"卢玫"},{"authorName":"余敏","id":"78e30665-d363-4ec8-9fa9-723c024f7629","originalAuthorName":"余敏"}],"doi":"","fpage":"1933","id":"0b8339e9-5dca-4d02-8b34-a86b75790cee","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"527759e3-ae63-4629-a002-f66bcf4ce069","keyword":"纳米流体","originalKeyword":"纳米流体"},{"id":"e472defa-7162-4567-a7ef-7d1f1958a808","keyword":"导热系数","originalKeyword":"导热系数"},{"id":"f63b899b-0d6b-4f69-a890-76c72b1fd0b0","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"}],"language":"zh","publisherId":"gcrwlxb201011034","title":"纳米流体导热系数的分子动力学模拟","volume":"31","year":"2010"},{"abstractinfo":"用分子动力学模拟方法研究了过冷Ni3Al熔体的微观结构演变过程和晶态\n相形核的动力学细节. 结果表明, 非晶团簇在形核前已经消失, 不参与形核过程;\n晶核为fcc结构和hcp结构的混合体, 呈现不规则形状.","authors":[{"authorName":"赵毅","id":"d3b7bf34-745a-4ea1-97ea-17100e726af3","originalAuthorName":"赵毅"},{"authorName":"赵九洲","id":"ca7b0ae3-cf0e-44e7-97bb-0b60f335fab1","originalAuthorName":"赵九洲"},{"authorName":"胡壮麒","id":"ee06d2f7-a645-467d-b196-5ff5f87046cf","originalAuthorName":"胡壮麒"}],"categoryName":"|","doi":"","fpage":"1157","id":"735bdc80-f38e-400c-b067-d5364b0404f2","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"90475b9b-49fb-4e4d-a8a5-6e75c8cd0d01","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"40de5422-2999-4416-9c7c-24674b31a3c8","keyword":"nucleation","originalKeyword":"nucleation"},{"id":"255869a4-3cae-4a26-ac2d-6202a1c7410d","keyword":"atomic cluster","originalKeyword":"atomic cluster"},{"id":"c0c91d50-82da-415f-ad6e-558007b4e1fd","keyword":"Ni3Al","originalKeyword":"Ni3Al"}],"language":"zh","publisherId":"0412-1961_2008_10_6","title":"过冷Ni3Al熔体形核的分子动力学模拟","volume":"44","year":"2008"}],"totalpage":5385,"totalrecord":53841}