{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文分析了用于燃气轮机系统的冷却技术,对采用空气冷却技术的GE-9FA,GE-9G型燃气轮机以及采用蒸汽冷却技术的GE-9H型燃气轮机进行了设计工况点的校核,通过定量计算重点研究了采用两种不同冷却技术的燃气轮机整合到IGCC系统中对系统热力性能、系统参数优化规律及环保性能的影响,从而为研究高效、环保的IGCC系统提供有价值的参考.","authors":[{"authorName":"段立强","id":"cafda40a-bb52-4347-bc1b-f266f7313f27","originalAuthorName":"段立强"},{"authorName":"林汝谋","id":"e7f2ec8e-1ac8-4328-962c-cb3baaef792b","originalAuthorName":"林汝谋"},{"authorName":"杨勇平","id":"7829814c-6d4d-4ff7-a3f1-3561cc24707f","originalAuthorName":"杨勇平"}],"doi":"","fpage":"17","id":"46b4988b-d9b7-4860-b328-2e5428e14ada","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2953be22-42a6-4703-86ef-b3bb669efa2c","keyword":"燃气轮机","originalKeyword":"燃气轮机"},{"id":"de3c3b8b-5db3-44d2-8287-04353390afa1","keyword":"冷却技术","originalKeyword":"冷却技术"},{"id":"4b94dfcd-24bd-4b70-8721-388c2e3a4a35","keyword":"IGCC","originalKeyword":"IGCC"},{"id":"ec3f91d3-a222-4699-90cc-0e83b7f9b783","keyword":"系统性能","originalKeyword":"系统性能"}],"language":"zh","publisherId":"gcrwlxb2005z1005","title":"燃气轮机采用不同冷却技术对IGCC系统性能影响","volume":"26","year":"2005"},{"abstractinfo":"热力循环计算是燃气轮机性能分析和设计的重要手段.随着燃气轮机热力循环参数不断提高,热力循环计算必须要能对变工况下透平冷气需求量作出准确的估计,并考虑冷气在燃气轮机循环各环节的影响.本文基于适用于多轴燃气轮机热力循环计算模型,引入混合模型,结合气体掺混的Hartsel模型,建立了带冷却模型的热力循环计算模型.对某三轴MW级燃气轮机的变工况性能进行计算,通过与简化冷却模型的计算结果及实验数据的比较、分析,表明考虑混合模型的热力循环计算结果与实验数据具有更好的一致性.","authors":[{"authorName":"纪星星","id":"5a989799-bd2e-4626-86d1-00c5dafd7a3b","originalAuthorName":"纪星星"},{"authorName":"顾春伟","id":"9c9214a5-6d52-4d92-85b7-7ec28464b1ea","originalAuthorName":"顾春伟"},{"authorName":"刘红","id":"69f79ba2-4577-4471-bc4f-673b5a18d866","originalAuthorName":"刘红"},{"authorName":"李朝坤","id":"9d75ccee-5a7c-4cca-b8b0-cbb18466d8c8","originalAuthorName":"李朝坤"}],"doi":"","fpage":"297","id":"68ddb6fa-a971-45a8-b979-6507880fc4cb","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"11031030-4304-46f5-adc5-1a177bc17f94","keyword":"热力循环","originalKeyword":"热力循环"},{"id":"c69de959-0c27-49d5-b59c-e47c6e123458","keyword":"冷却模型","originalKeyword":"冷却模型"},{"id":"372b7d0f-949b-4f5f-b377-8e943fb2c735","keyword":"气体掺混","originalKeyword":"气体掺混"}],"language":"zh","publisherId":"gcrwlxb201502015","title":"考虑冷却模型的燃气轮机热力循环计算模型的研究","volume":"36","year":"2015"},{"abstractinfo":"瞬态液晶技术广泛应用于燃气轮机内部冷却的表面传热系数测量,获得其误差特性十分重要.本文针对典型的90°肋片内部冷却通道,采用单一液晶和混合液晶,对热敏液晶测温和瞬态液晶技术的测传热系数的误差进行了理论分析和实验研究,结果表明,采用色调标定曲线时液晶测温的误差最小,不超过0.2℃;混合液晶的温度-颜色特性与混合前的单一窄带液晶不同,因此必须对混合液晶进行独立的标定;瞬态液晶测量表面传热系数误差的理论分析和实验结果趋势一致,该误差在13%左右,且选取较高的主流参考温度可以减小误差.","authors":[{"authorName":"阚瑞","id":"268b8897-4273-4340-825a-bf37ad37eb6a","originalAuthorName":"阚瑞"},{"authorName":"任静","id":"1f0edfaa-dac5-4713-a6f3-8676b8557a2f","originalAuthorName":"任静"},{"authorName":"蒋洪德","id":"e1ab9489-a88b-4619-a023-df6a91cd3611","originalAuthorName":"蒋洪德"}],"doi":"","fpage":"1444","id":"900d0828-ce48-45a1-8575-f29afe3cc0ec","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8a41d1d6-3c4c-45f6-94f6-aba707ed2b77","keyword":"燃气轮机内部冷却","originalKeyword":"燃气轮机内部冷却"},{"id":"9e0c34f3-7127-442d-93bc-607210eea514","keyword":"热敏液晶","originalKeyword":"热敏液晶"},{"id":"3d81d6e6-5612-4938-9f43-2c46836b51b8","keyword":"主流参考温度","originalKeyword":"主流参考温度"},{"id":"65096e33-9293-4ff1-bb1b-a995b8c04fbb","keyword":"测量误差","originalKeyword":"测量误差"}],"language":"zh","publisherId":"gcrwlxb201308011","title":"燃气轮机内部冷却瞬态液晶技术的误差分析","volume":"34","year":"2013"},{"abstractinfo":"本文基于对IGCC系统的全面分析研究,归纳总结了导致燃气轮机工况变化的主要原因;应用双开口变量(整体空分系数(Xas)和氮气回注系数(Xgn))和折合系统效率的概念,建立了IGCC中燃气轮机全工况特性简化模型;并通过大量定量计算,得出不同Xas和Xgn组合条件下,IGCC中燃气轮机全工况网络特性,为确定系统变工况最佳调节规律提供全面信息","authors":[{"authorName":"江丽霞","id":"3c40d3a0-97dc-44be-ab6a-b9b828f8ffc8","originalAuthorName":"江丽霞"},{"authorName":"林汝谋","id":"c9a58dd2-f396-4e19-9f38-e692e291429a","originalAuthorName":"林汝谋"},{"authorName":"郑莉莉","id":"d2e77a35-0553-48df-8cec-3998ea333c5c","originalAuthorName":"郑莉莉"},{"authorName":"刘泽龙","id":"6742fca3-b5cb-4fae-9981-7b5a8794a238","originalAuthorName":"刘泽龙"},{"authorName":"段立强","id":"ce82c6db-edc3-401c-8ff1-811896e0e5be","originalAuthorName":"段立强"},{"authorName":"蔡睿贤","id":"0d1f6a76-fd26-4877-8031-0fa5b62a197d","originalAuthorName":"蔡睿贤"}],"doi":"","fpage":"669","id":"49f54422-9735-49c2-a772-f0d8be7e8a1c","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8fd973f7-83a4-45f7-8424-2113175a393a","keyword":"IGCC","originalKeyword":"IGCC"},{"id":"66b70945-25f4-483c-b4d2-a1a83ae83d93","keyword":"燃气轮机","originalKeyword":"燃气轮机"},{"id":"de17041f-41c2-4173-b720-0d43d3e7a239","keyword":"全工况","originalKeyword":"全工况"},{"id":"804051aa-2509-4be0-b814-e7c15e80b050","keyword":"特性","originalKeyword":"特性"}],"language":"zh","publisherId":"gcrwlxb200006003","title":"IGCC中燃气轮机全工况网络特性","volume":"21","year":"2000"},{"abstractinfo":"本文对燃气轮机的简单循环、开环和半闭环系统,分别以空气和CO2作为工质、纯氧为氧化物、天然气为燃料时的热力循环过程,在喷水及不喷水条件下,利用自行设计的分析软件进行了较为系统的数值分析和性能评估,详尽分析了喷水量对使用空气或CO2作为工质的半闭环燃气轮机循环的影响,揭示了适量喷水有助于提高循环效率和输出功率的客观规律,为研制CO2零排放的高效燃气轮机装置奠定了坚实的理论基础.","authors":[{"authorName":"单晓明","id":"e76f4fe7-dc1a-410c-985d-5350fd605158","originalAuthorName":"单晓明"},{"authorName":"","id":"6c62830e-5200-4d7b-814a-c25b2a70292a","originalAuthorName":""}],"doi":"","fpage":"9","id":"b085547e-7a53-45ba-b06a-afd4c08384ae","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"93f12cf0-3028-41e2-9678-160efe1f9e2a","keyword":"燃气轮机","originalKeyword":"燃气轮机"},{"id":"5b0c41c7-daed-4b9a-ac9c-3e2a0bd4c9d5","keyword":"半闭环","originalKeyword":"半闭环"},{"id":"048e18b3-5c2c-4125-8232-c33985197c5d","keyword":"O2/CO2燃烧","originalKeyword":"O2/CO2燃烧"},{"id":"7d88e84d-769d-4fec-b59c-da80f1e25e73","keyword":"喷水","originalKeyword":"喷水"},{"id":"f2d319c6-c30b-4f23-a354-3bba4e1fd461","keyword":"零排放","originalKeyword":"零排放"}],"language":"zh","publisherId":"gcrwlxb200801003","title":"喷水对半闭环燃气轮机循环的影响","volume":"29","year":"2008"},{"abstractinfo":"凹陷涡发生器是一种高效的燃气轮机涡轮叶片冷却结构,本文对分别具有球形和泪滴形凹陷涡发生器阵列的表面传热与流动性能开展了实验和数值计算研究.本文分别采用Standardk-ω,SST和Reliazablek-ε三种湍流模型计算了凹陷涡发生器表面湍流传热与流阻性能,并与实验结果进行了对比,确定了Standardk-ω是研究凹陷传热和流动最精确的湍流模型.通过该研究,获得了球形和泪滴形凹陷涡发生器在雷诺数范围8500~60000内的传热及流阻和流动特性.该实验研究表明,与光滑通道内湍流流动相比,球形凹陷传热性能提高约60%,摩擦因子增加约70%;泪滴凹陷传热性能提高约90%,摩擦因子增加一倍左右.泪滴形凹陷表现出更好的传热性能和综合热性能.","authors":[{"authorName":"饶宇","id":"a8910b59-d60c-4317-80c8-513599ed0f9d","originalAuthorName":"饶宇"},{"authorName":"李博","id":"eb69260c-37ea-4915-a687-190ae2fd26c9","originalAuthorName":"李博"},{"authorName":"冯岩","id":"bd1a4ad9-c8d7-45e2-8df9-733c56b46135","originalAuthorName":"冯岩"}],"doi":"","fpage":"1774","id":"36980139-f0f9-4189-89ee-70ae195739db","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6708f714-fc79-4a8c-878d-fb0c74c723d4","keyword":"凹陷","originalKeyword":"凹陷"},{"id":"a1ff4174-d3ef-4197-9c0e-a1a450da0442","keyword":"涡发生器","originalKeyword":"涡发生器"},{"id":"acf44279-adba-4dc6-bb55-fd0c7056f288","keyword":"燃气轮机冷却","originalKeyword":"燃气轮机冷却"},{"id":"25757b99-1262-403b-9071-4dfc20a8d009","keyword":"传热","originalKeyword":"传热"},{"id":"f3df3ce2-5166-4994-b71b-9a90a989692e","keyword":"摩擦因子","originalKeyword":"摩擦因子"}],"language":"zh","publisherId":"gcrwlxb201508033","title":"球形和泪滴形凹陷涡发生器传热实验和数值计算","volume":"36","year":"2015"},{"abstractinfo":"灵活燃料燃气轮机是地面燃机发展的一个重要趋势,准确地分析其整体气动热力性能对其开发设计及相关技术的发展具有重大的意义.针对灵活燃料燃气轮机,本文基于显式顺序算法开发了燃机整体气动热力性能分析软件OptiCC,对GE公司的PG9351FA和西门子公司的V94.3A机组进行了性能分析,反推得其冷却空气信息,所获得的燃气轮机性能数据与燃气轮机厂商公布的数据具有较好的一致性,从而验证了所采用算法的准确性,在此基础上,初步探讨了PG9351FA机组改烧合成气后的性能,进一步验证了OptiCC针对灵活燃料燃气轮机整机性能分析的准确度.","authors":[{"authorName":"孙鹏","id":"7470779f-e480-45a4-96ba-7305453a5d8c","originalAuthorName":"孙鹏"},{"authorName":"任静","id":"5c95d0e7-f6b5-448c-808c-9d0a17d3b571","originalAuthorName":"任静"},{"authorName":"蒋洪德","id":"1fc1f5ff-bfce-4b42-867c-c22dfd8b57c1","originalAuthorName":"蒋洪德"}],"doi":"","fpage":"29","id":"a2f0869a-4f91-4cee-b6fb-ed7059905f42","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"52af09dd-ac97-4557-b428-c0e45ab6446a","keyword":"燃气轮机","originalKeyword":"燃气轮机"},{"id":"f9aa61d7-1ab9-4e28-a742-4840d0ee1757","keyword":"灵活燃料","originalKeyword":"灵活燃料"},{"id":"26196bac-f8ed-4bed-800c-2f432923354a","keyword":"系统建模","originalKeyword":"系统建模"}],"language":"zh","publisherId":"gcrwlxb201101008","title":"基于顺序算法的灵活燃料燃气轮机气动热力性能分析","volume":"32","year":"2011"},{"abstractinfo":"对某燃气轮机一级涡轮动叶片断裂及事故原因进行了分析.结果表明,一级涡轮动叶片的高温机械疲劳断裂是导致本次破坏事故的直接原因,导致叶片断裂的根本原因是该型燃气轮机在改烧轻油后设计上存在缺陷所致.该型燃气轮机主要缺陷是:环形燃烧室刚度不足,改烧轻油后燃烧室壁温增高;叶片冷却效果不好,涂层易于脱落;温控检测点不足,达不到监控效果以及所规定的停机后自动喷水的运行方式不当等.","authors":[{"authorName":"袁智","id":"ce01e2bb-19cb-4cf2-a123-6b0d0d3ab5ca","originalAuthorName":"袁智"},{"authorName":"赵爱国","id":"29d61c55-8618-4e34-a058-b9bcd6d9e3b8","originalAuthorName":"赵爱国"},{"authorName":"陶春虎","id":"a6c804ea-98c4-4def-8658-5f3babfd1a0f","originalAuthorName":"陶春虎"},{"authorName":"李运菊","id":"92f06999-80ab-4c4a-a47e-a9d1101ecca0","originalAuthorName":"李运菊"}],"doi":"10.3969/j.issn.1001-4381.2003.z1.040","fpage":"131","id":"8d3cef87-3f65-4589-bb31-620731b0ea6a","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"a2ee0ae1-7366-4ce3-b7c2-d91c62808604","keyword":"燃气轮机","originalKeyword":"燃气轮机"},{"id":"7edd313b-20ab-47d1-9409-84b15439b99a","keyword":"涡轮叶片","originalKeyword":"涡轮叶片"},{"id":"fd414a24-9f1e-47da-97b9-6344922b311d","keyword":"高温机械疲劳","originalKeyword":"高温机械疲劳"}],"language":"zh","publisherId":"clgc2003z1040","title":"某燃气轮机涡轮叶片断裂及事故原因分析","volume":"","year":"2003"},{"abstractinfo":"本文以俄罗斯GTDl250型燃气轮机为样本对MW级地面燃气轮机进行了热力循环分析.MW级地面燃气轮机作为一类小型(轻型)、多转子(双转子)、具有简单或复杂循环的燃气轮机,在电力工业、石油工业和战车动力等方面有着广泛的用途.在热力循环分析的基础上,提出了我国在研制高性能MW级地面燃气轮机时应重点解决的问题.","authors":[{"authorName":"王会社","id":"c75a902a-12b9-4f8e-8db7-14c84d03e38f","originalAuthorName":"王会社"},{"authorName":"张永军","id":"44b5f043-918e-4711-a9cd-d28acffa2bcc","originalAuthorName":"张永军"},{"authorName":"杨科","id":"7a4a86f7-a465-49c8-b8a8-cfe88ad59933","originalAuthorName":"杨科"},{"authorName":"杜建一","id":"1d5e585c-b54e-4609-89a6-a1430e85e536","originalAuthorName":"杜建一"},{"authorName":"谭春青","id":"744d3133-085d-4345-ba01-9aedd437ad8f","originalAuthorName":"谭春青"},{"authorName":"徐建中","id":"4040926c-6cb9-4b78-937d-b8dfce339db9","originalAuthorName":"徐建中"}],"doi":"","fpage":"1503","id":"18129e1e-e8ac-416b-ae4e-d2e16360ee1b","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7698f176-fe90-4c96-b45b-9464bb85c14d","keyword":"MW级燃气轮机","originalKeyword":"MW级燃气轮机"},{"id":"e6a13747-25bd-4e83-bf6c-4ce985d6b492","keyword":"用途","originalKeyword":"用途"},{"id":"65ef50ec-04a8-41ff-bb22-dd38ad9c208c","keyword":"热力循环","originalKeyword":"热力循环"},{"id":"809a3c5d-0cfc-4b2e-afa5-d697535c2a16","keyword":"分析","originalKeyword":"分析"}],"language":"zh","publisherId":"gcrwlxb200809016","title":"MW级地面燃气轮机热力循环分析","volume":"29","year":"2008"},{"abstractinfo":"在建立压气机、燃烧室、透平、回热器、转轴转动惯性等单元部件动态模型的基础上,建立了恒转速简单和回热型微型燃气轮机的系统动态模型及其控制系统模型,对其冷启动、升降负荷和甩负荷动态过程进行了动态模拟,并对两者的动态性能进行了对比。结果表明,系统动态模型能够有效地对系统的各个典型动态过程进行模拟与分析,计算稳定可靠,可为微燃机控制系统设计与分析提供模型基础;控制系统设计合理,能够满足调节负荷和转速的要求,保证循环系统安全运行;回热器的热惯性和扰动幅度是影响微燃机系统响应的重要因素。","authors":[{"authorName":"欧阳艳艳","id":"a11fcfbc-8205-4bb9-9616-5473333cc6d8","originalAuthorName":"欧阳艳艳"},{"authorName":"张士杰","id":"bd4b7ec6-133e-4601-838b-4056f8a0c81b","originalAuthorName":"张士杰"},{"authorName":"赵丽凤","id":"e3b408ea-1a1c-4cd2-b2a8-c5ea616ee261","originalAuthorName":"赵丽凤"},{"authorName":"王波","id":"414e1278-46c5-4ed9-a856-d18ba91d5882","originalAuthorName":"王波"},{"authorName":"肖云汉","id":"019b99d5-706b-47f0-b2e4-afb3e50a4664","originalAuthorName":"肖云汉"}],"doi":"","fpage":"361","id":"80f73c35-d4de-4b41-8162-3b38a0981221","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"35642379-07d8-459c-8bcc-6daa47c9b628","keyword":"微型燃气轮机","originalKeyword":"微型燃气轮机"},{"id":"d437fc95-d891-4614-bbad-38dd8117f87a","keyword":"动态模型","originalKeyword":"动态模型"},{"id":"28478fec-b06e-47b7-ba04-55e8b1a5f873","keyword":"动态响应","originalKeyword":"动态响应"},{"id":"8e78a410-4730-4c31-8d50-295917cc6282","keyword":"回热器","originalKeyword":"回热器"}],"language":"zh","publisherId":"gcrwlxb201203001","title":"微型燃气轮机动态模拟与分析","volume":"33","year":"2012"}],"totalpage":603,"totalrecord":6027}