{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用不同焊接工艺参数对X100管线钢进行焊接试验,并对母材进行微观组织观察及宏观力学特性测试,对比分析X100管线钢母材和经历不同焊接热过程后所得焊缝的微观组织及宏观力学特性.结果表明:经历不同焊接热过程后的X100管线钢焊缝组织比母材组织粗大,主要为无碳贝氏体;冲击韧性比母材略高;抗拉强度和屈服强度与母材基本保持一致.","authors":[{"authorName":"张敏","id":"7f604361-73f5-4e41-ab5e-b5be3f209ac6","originalAuthorName":"张敏"},{"authorName":"李琳","id":"17673044-e342-4b1b-8998-9b611384734f","originalAuthorName":"李琳"},{"authorName":"李继红","id":"bca9ab8e-b458-4c1a-b3f2-4752f28df08f","originalAuthorName":"李继红"}],"doi":"","fpage":"7","id":"6f427bb5-63cf-48ee-a0b4-74ba60eeab3d","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"1fa37e0e-82fc-452e-b8f6-e910398fa08c","keyword":"X100管线钢","originalKeyword":"X100管线钢"},{"id":"abf6ca8a-11ea-4936-acc9-622b790fa76b","keyword":"焊接热过程","originalKeyword":"焊接热过程"},{"id":"d4a2e4e8-369a-484a-af86-7dd0be4600db","keyword":"无碳贝氏体","originalKeyword":"无碳贝氏体"},{"id":"20a3b21d-5cb2-4a9b-9d78-8fc5a1cadd85","keyword":"焊缝组织","originalKeyword":"焊缝组织"},{"id":"5850a0c1-49c6-436d-9e4d-b4d1f86a281b","keyword":"力学特性","originalKeyword":"力学特性"}],"language":"zh","publisherId":"bqclkxygc201301003","title":"焊接热过程对X100管线钢焊缝组织性能的影响","volume":"36","year":"2013"},{"abstractinfo":"将熔化极气体保护焊(GMAW)的热输入处理为三维移动串热源,建立了串热源模型,模拟了JG590低合金钢的GMAW焊接热过程.进行了JG590钢的GMAW焊接工艺实验,通过焊缝横截面熔合线的几何形状以及焊接接头的几何尺寸对所建模型进行了实验验证.分析评价了目前常用的t8/5计算公式,利用JG590钢GMAW焊接热过程的模拟结果,结合其连续冷却组织转变图(CCT图),成功预测了焊接热影响区(HAZ)的组织及硬度.","authors":[{"authorName":"王后孝","id":"be153cfb-d9fd-402f-91f2-8ee7d72bdd68","originalAuthorName":"王后孝"},{"authorName":"魏艳红","id":"c0d191e0-1eed-4a6d-b7cd-dc0de91562b9","originalAuthorName":"魏艳红"},{"authorName":"孙俊生","id":"ffefdb95-eb67-42c4-a680-a41bdc81a481","originalAuthorName":"孙俊生"},{"authorName":"郑媛媛","id":"d7df71a4-743b-4583-a398-93bbb8fad881","originalAuthorName":"郑媛媛"}],"doi":"10.3321/j.issn:0412-1961.2005.08.012","fpage":"839","id":"98aa4391-7ef2-4296-90df-06ad4ec6fd64","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"be775e26-a8a6-42a4-91e3-892b1de2f6c0","keyword":"熔化极气体保护焊","originalKeyword":"熔化极气体保护焊"},{"id":"8bf82edb-d36a-4baa-92a7-47bba7fcae9a","keyword":"三维移动串热源","originalKeyword":"三维移动串热源"},{"id":"a689af76-d65b-4585-8c6b-9e217533c366","keyword":"焊接热过程","originalKeyword":"焊接热过程"},{"id":"3b8b229f-f84f-4c4d-8ed7-5c0e44d5557b","keyword":"组织及硬度预测","originalKeyword":"组织及硬度预测"}],"language":"zh","publisherId":"jsxb200508012","title":"基于串热源及CCT图的GMAW焊接热影响区组织及硬度预测","volume":"41","year":"2005"},{"abstractinfo":"考虑熔池与小孔的耦合作用, 建立了穿孔等离子弧焊接三维瞬态熔池流体流动和传热过程的数学模型. 采用流体体积函数法追踪小孔的形状与尺寸, 利用焓--孔隙度法处理凝固熔化过程中的相变潜热以及动量损耗问题. 针对穿孔等离子弧焊接的工艺特点, 建立了随小孔深度动态调整的组合式体积热源模式. 对8 mm板厚的不锈钢工件进行了穿孔焊接工艺实验和数值模拟, 获得了等离子弧焊接过程中熔池出现、小孔形成、流场与温度场演变、工件熔透与穿孔等动态过程的基础数据, 展示了小孔穿孔前后熔池流体流动规律. 工件背面小孔形状尺寸以及焊缝横断面的数值模拟结果与实验测试结果基本吻合.","authors":[{"authorName":"张涛武传松陈茂爱","id":"141829df-29de-453f-a3bb-b1d4adddd7e6","originalAuthorName":"张涛武传松陈茂爱"}],"categoryName":"|","doi":"10.3724/SP.J.1037.2012.00147","fpage":"1025","id":"628b1468-abc4-4c25-a807-c7867d9542da","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"6f05307d-a634-4cdf-bc8f-053ecf5f23af","keyword":"熔池","originalKeyword":"熔池"},{"id":"602d2d60-a1d9-4566-bb32-aff53e3c342d","keyword":"keyhole","originalKeyword":"keyhole"},{"id":"a97df859-dae9-46f4-ba4a-43c55573fc09","keyword":"fluid flow","originalKeyword":"fluid flow"},{"id":"1df4efc3-83b6-4bd1-b28f-eb99d5e2188c","keyword":"heat transfer","originalKeyword":"heat transfer"},{"id":"674ce2f5-9bba-4ba3-877f-a803c82fd646","keyword":"plasma arc welding","originalKeyword":"plasma arc welding"}],"language":"zh","publisherId":"0412-1961_2012_9_7","title":"穿孔等离子弧焊接熔池流动和传热过程的数值模拟","volume":"48","year":"2012"},{"abstractinfo":"考虑熔池与小孔的耦合作用,建立了穿孔等离子弧焊接三维瞬态熔池流体流动和传热过程的数学模型.采用流体体积函数法追踪小孔的形状与尺寸,利用焓-孔隙度法处理凝固熔化过程中的相变潜热以及动量损耗问题.针对穿孔等离子弧焊接的工艺特点,建立了随小孔深度动态调整的组合式体积热源模式.对8 mm板厚的不锈钢工件进行了穿孔焊接工艺实验和数值模拟,获得了等离子弧焊接过程中熔池出现、小孔形成、流场与温度场演变、工件熔透与穿孔等动态过程的基础数据,展示了小孔穿孔前后熔池流体流动规律.工件背面小孔形状尺寸以及焊缝横断面的数值模拟结果与实验测试结果基本吻合.","authors":[{"authorName":"张涛","id":"fa48fb34-c374-41de-aed5-9778012f885a","originalAuthorName":"张涛"},{"authorName":"武传松","id":"feb4550a-c75a-48b4-824a-fff89cc213d0","originalAuthorName":"武传松"},{"authorName":"陈茂爱","id":"e7004aae-f92d-4d20-a756-524cc69cbca0","originalAuthorName":"陈茂爱"}],"doi":"10.3724/SP.J.1037.2012.00147","fpage":"1025","id":"0ad5c9d3-522c-4e8d-8149-4926f37d2f6c","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1fae5607-16c6-49ee-a379-04ff8e969d77","keyword":"熔池","originalKeyword":"熔池"},{"id":"3d4ca13b-42df-4852-afac-bfa475154a99","keyword":"小孔","originalKeyword":"小孔"},{"id":"3ff90aa0-92d4-4a07-807c-62999bb35768","keyword":"流体流动","originalKeyword":"流体流动"},{"id":"238e6029-be99-4b32-bfcb-bf5d1ef42c28","keyword":"传热","originalKeyword":"传热"},{"id":"7606e882-bd1d-4c3c-bdbb-4f09fd4a61bb","keyword":"等离子弧焊","originalKeyword":"等离子弧焊"}],"language":"zh","publisherId":"jsxb201209001","title":"穿孔等离子弧焊接熔池流动和传热过程的数值模拟","volume":"48","year":"2012"},{"abstractinfo":"利用由等离子电弧(PAW)与钨极电弧(TIG)构成的单电源双面电弧焊接(DSAW)工艺可以获得深宽比较大的焊缝,该工艺具有高效、低成本的特点,是一种先进焊接技术。本文综合考虑影响等离子弧小孔形成的等离子流力、重力、表面张力等力学因素,建立了小孔形成过程的数学模型,并以此为基础建立了DSAW电流密度分布和焊接传热的控制方程。采用数值模拟技术对上述方程进行耦合求解,定量分析了双面电弧焊接条件下的传热规律及热影响区性能,同时作为对比也模拟了PAW 焊接的传热现象,揭示了DSAW大幅度增加熔深、改善热影响区性能的机理,为工艺参数优化设计提供了依据。","authors":[{"authorName":"孙俊生","id":"4251dd56-49e4-42dc-89b2-376e6fe12787","originalAuthorName":"孙俊生"}],"categoryName":"|","doi":"","fpage":"499","id":"4baaba7a-7c4c-4bd5-8ae0-a0206bdb177c","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"e7f2db9b-efef-41ec-912e-f9f56438c234","keyword":"双面电弧焊接","originalKeyword":"双面电弧焊接"},{"id":"872a1a2a-b588-47da-bd28-ae10f4d06dbe","keyword":"null","originalKeyword":"null"},{"id":"44211a34-da34-40a4-b1c1-1beb9a059573","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_5_8","title":"等离子与钨极双面电弧焊接热过程的数值模拟","volume":"39","year":"2003"},{"abstractinfo":"利用由等离子电弧(PAW)与钨极电弧(TIG)构成的单电源双面电弧焊接(DSAW)工艺可以获得深宽比较大的焊缝,该工艺具有高效、低成本的特点,是一种先进焊接技术.本文综合考虑影响等离子弧小孔形成的等离子流力、重力、表面张力等力学因素,建立了小孔形成过程的数学模型,并以此为基础建立了DSAW电流密度分布和焊接传热的控制方程.采用数值模拟技术对上述方程进行耦合求解,定量分析了双面电弧焊接条件下的传热规律及热影响区性能,同时作为对比也模拟了PAW焊接的传热现象,揭示了DSAW大幅度增加熔深、改善热影响区性能的机理,为工艺参数优化设计提供了依据.","authors":[{"authorName":"孙俊生","id":"5d278a5e-8b54-419e-9c62-a4f9ca93afbf","originalAuthorName":"孙俊生"},{"authorName":"武传松","id":"51e94bd4-89df-4a9c-9415-3f0e8448a140","originalAuthorName":"武传松"}],"doi":"10.3321/j.issn:0412-1961.2003.05.007","fpage":"499","id":"7f3b2d5c-66ca-457d-b009-d38a4256dabd","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d573dacf-3e4f-434d-b1da-5a98caba0288","keyword":"双面电弧焊接","originalKeyword":"双面电弧焊接"},{"id":"e8a1903d-1887-48c2-aa5f-03f713915bd1","keyword":"温度场","originalKeyword":"温度场"},{"id":"9293c055-a2ea-48d6-ab8c-4f664e26266b","keyword":"热影响区","originalKeyword":"热影响区"},{"id":"4bab5f40-7f58-4fca-bc2d-be64896b4507","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"jsxb200305007","title":"等离子与钨极双面电弧焊接热过程的数值模拟","volume":"39","year":"2003"},{"abstractinfo":"在许多物质或能量传递交换的过程中都有效率的概念,如热功转换过程、流动过程、输电过程等,但是在传热过程中却没有.基于效率可以讨论传热过程的性能,并可作为传热过程优化的目标.本文基于新的物理量=定义传热过程的效率,讨论影响传热过程效率的各种因素,特别是把\"不可逆\"因素与\"不可用\"因素分开.不可逆因素来自于某种能量形式的耗散,不可用因素是指某种能量形式无法应用,无法应用的原因又可分为两种,一种是基准点取在T>0 K处引起,另一种是由于过程非最优引起的.","authors":[{"authorName":"胡帼杰","id":"53392984-3c23-4142-a8e3-8b992903b9f6","originalAuthorName":"胡帼杰"},{"authorName":"过增元","id":"88f8a6f2-0e71-4b68-b9aa-00d656e679b0","originalAuthorName":"过增元"}],"doi":"","fpage":"1005","id":"8400f6b2-4ea6-47f0-a6bb-2ffbf1336060","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"861a5bb5-1d0b-4651-8330-490fe693f118","keyword":"传热效率","originalKeyword":"传热效率"},{"id":"94006691-c6d5-42f0-a98f-e42d245d86a4","keyword":"(火积)","originalKeyword":"(火积)"},{"id":"a45f4058-b6f2-495f-b330-88a8c7fc177f","keyword":"换热器","originalKeyword":"换热器"},{"id":"f4c5eb2e-b9f5-4379-9b5f-47e5b258f3ff","keyword":"平衡逆流","originalKeyword":"平衡逆流"},{"id":"8300db86-a1e1-41a0-af3c-2e1b6279e561","keyword":"不可用","originalKeyword":"不可用"}],"language":"zh","publisherId":"gcrwlxb201106027","title":"传热过程的效率","volume":"32","year":"2011"},{"abstractinfo":"高炉风口是高炉输送高温鼓风和煤粉必需的冷却设备。以外观尺寸相同的空腔式风口和贯流式风口为研究对象,运用数值模拟分析软件Fluent,采用k-epsilon双方程模型,压力基求解方法,对两者的换热过程进行模拟并对照分析了入口流速对其换热性能的影响。结果表明:随着水流量增加,风口表面温度下降,但进出口压损增加;相同水流量情况下,贯流式风口比空腔式风口换热能力更强,但产生的压损更大。综合考虑,2种模型的进水流速均以5~10m/s为宜。","authors":[{"authorName":"刘啸","id":"2e5a68d7-d5a3-4e04-8ed6-e4a665234e3f","originalAuthorName":"刘啸"},{"authorName":"张军","id":"e3a4e3a6-69e1-40ce-98f4-43636fbd983f","originalAuthorName":"张军"},{"authorName":"毛来锋","id":"e90f550a-27a4-44cc-87ae-29547ea7fd4a","originalAuthorName":"毛来锋"},{"authorName":"黄靖","id":"bae7e521-a8f4-44d2-9fa6-466773b1938d","originalAuthorName":"黄靖"}],"doi":"","fpage":"9","id":"db9ae938-644d-4802-a342-ba58e21ab978","issue":"5","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"dc2e322b-d615-4c33-9657-7a142cc700f1","keyword":"风口","originalKeyword":"风口"},{"id":"412b6014-f4f9-48ef-8f66-8f22b4e25b11","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"f3410ffd-c248-4edc-82e6-d3dbc13d3298","keyword":"换热性能","originalKeyword":"换热性能"}],"language":"zh","publisherId":"gtyj201205003","title":"高炉风口换热过程数值模拟","volume":"40","year":"2012"},{"abstractinfo":"引用导热微分方程并结合工程传递的评价准则,建立了二维导热过程热传递的数学模型,给出了传递系数和流密度的表达式,并以矩形截面的无限长柱体为例,对二维稳态导热过程传递进行了数值求解.","authors":[{"authorName":"乔春珍","id":"c94c11e1-f5f8-4cab-af8a-6861d9cae438","originalAuthorName":"乔春珍"},{"authorName":"项新耀","id":"f00644bf-c333-4b9e-9c19-4ef8ae2c8d70","originalAuthorName":"项新耀"},{"authorName":"吴照云","id":"68269504-5a57-4e57-8950-0eda2061bd7b","originalAuthorName":"吴照云"}],"doi":"","fpage":"202","id":"3e241838-091a-4372-942e-56c7c535634b","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0a4919b2-e82e-4b71-9987-f1c3f87846e1","keyword":"二维导热","originalKeyword":"二维导热"},{"id":"280d9061-0b65-4f82-bd31-b2a6eea86512","keyword":"传递","originalKeyword":"传递"},{"id":"cdcf7306-2cf3-4095-b8fa-2c5b865b7ae2","keyword":"传递系数","originalKeyword":"传递系数"},{"id":"4f5a0f19-de6e-47fd-b894-6e99201ffad9","keyword":"流密度","originalKeyword":"流密度"},{"id":"c1fe8c21-0cd6-4c33-af54-f67ed555b51e","keyword":"数值解","originalKeyword":"数值解"}],"language":"zh","publisherId":"gcrwlxb200302006","title":"二维导热过程(火用)传递描述","volume":"24","year":"2003"},{"abstractinfo":"本文利用数值方法分析了地板采暖的传热特性,以及楼板结构对埋管散热的影响和热量的分配情况,给出了计算埋管传热系数公式和热媒在流动过程中温度分布公式.计算表明,楼板结构、材料、埋管间距等因素对埋管传热有较大的影响,地板采暖不宜铺地毯或采用木地板.","authors":[{"authorName":"杨德伟","id":"fe2c833a-4215-4aa0-b976-f4ec3a2a6c29","originalAuthorName":"杨德伟"},{"authorName":"王振兴","id":"8318b2a8-1813-4070-9a0c-e77abbc23154","originalAuthorName":"王振兴"}],"doi":"","fpage":"472","id":"c7bfb54a-4a69-4d8e-845c-c91a17957442","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c7a3989e-872e-4d01-9033-bcaa7792be29","keyword":"地板采暖","originalKeyword":"地板采暖"},{"id":"736eb5c7-5391-4edc-ae4a-e71f71ad1128","keyword":"传热","originalKeyword":"传热"},{"id":"196eaf56-67a4-4578-8006-ae8bda50e453","keyword":"非结构化网格","originalKeyword":"非结构化网格"},{"id":"aa2c6de1-6d22-4104-8704-6d37f06227c0","keyword":"数值解","originalKeyword":"数值解"}],"language":"zh","publisherId":"gcrwlxb200703035","title":"地板采暖传热过程分析","volume":"28","year":"2007"}],"totalpage":4450,"totalrecord":44498}