{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"3D打印技术的发展使复杂梯度结构的制造更加容易,有必要对复杂梯度问题的求解开展研究;目前,关于梁结构模量沿轴向或厚度方向梯度变化问题的研究已经较多,但对模量沿2个方向同时变化的研究较少.因此,通过复数形式傅里叶分解的方法对模量以指数形式沿厚度方向和轴向同时变化梯度平面复合梁问题进行了求解.首先,采用弹性力学半逆解法得到了问题的四阶变系数偏微分控制方程的通解;然后,利用级数展开,求解了对称载荷作用下该梁的特解;最后,通过与有限元结果进行对比,说明了级数解的正确性.结果表明:当梯度双向变化时,梁结构的应力分布和变形情况更加复杂,模量较高的位置应力较大,而模量较低的位置应力较小.提出的级数解还可推广至其他相关的梯度双向变化非均匀平面和半平面问题的研究.","authors":[{"authorName":"杨青","id":"fc98cc67-a366-4392-9315-6f4d52778ac7","originalAuthorName":"杨青"},{"authorName":"刘卫平","id":"0d0cee0d-215c-4deb-800d-700155453558","originalAuthorName":"刘卫平"},{"authorName":"余木火","id":"81a9ce80-23e2-47d0-b324-3d65f9b109b0","originalAuthorName":"余木火"},{"authorName":"郑百林","id":"394fef74-5dfb-4a77-b4bd-acda0fcce43c","originalAuthorName":"郑百林"},{"authorName":"晏冬秀","id":"bb1b4e80-b175-4bad-8d69-ad2958471bc7","originalAuthorName":"晏冬秀"},{"authorName":"陈萍","id":"3467b7f3-8704-41bd-936e-13010ff98ea3","originalAuthorName":"陈萍"},{"authorName":"贾丽杰","id":"0444d741-0cdb-49a3-bdb3-cc8db3c103a2","originalAuthorName":"贾丽杰"},{"authorName":"魏冉","id":"b8dc2591-95ef-4998-8c7d-e82947547574","originalAuthorName":"魏冉"}],"doi":"10.13801/j.cnki.fhclxb.20160324.002","fpage":"2884","id":"583317a5-555a-48db-b6b9-50d467f2e968","issue":"12","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"558a3211-c347-4069-8179-fbbb1ce0291f","keyword":"复数形式傅里叶分解","originalKeyword":"复数形式傅里叶分解"},{"id":"c9fe7c0b-ba21-4797-8e06-bf21ba1460d5","keyword":"模量双向变化","originalKeyword":"模量双向变化"},{"id":"513baefe-de22-4589-b595-1ffc4a557d46","keyword":"梯度复合平面梁","originalKeyword":"梯度复合平面梁"},{"id":"b59538b3-c262-4835-8e8f-eb0430e18879","keyword":"通解","originalKeyword":"通解"},{"id":"533735a4-7dbb-42a1-aa44-2f708a3200ce","keyword":"级数解","originalKeyword":"级数解"}],"language":"zh","publisherId":"fhclxb201612025","title":"一种模量双向变化的梯度复合平面梁的级数解","volume":"33","year":"2016"},{"abstractinfo":"采用分子动力学方法研究压头尺寸(半径分别为1.5nm、2.5nm、3.5nm、4.5nm)和加载速度(10m/s、20m/s、30m/s、40m/s)对Ni基单晶合金γ/γ'(001)晶面纳米压痕测试结果(弹性模量和硬度)的影响.结果表明压头尺寸和加载速度对Ni基单晶合金γ/γ'(001)晶面的纳米压痕测试结果有显著影响.采用中心对称参数研究各模型不同压入深度时基体中位错的形核和运动情况,结果表明压头尺寸越大、加载速度越快,基体γ相中位错形核形式越剧烈.压头尺寸较大或加载速度较快的模型在γ相中产生了棱柱型位错环,棱柱型位错环在γ相中沿着{111}面滑移,最终在γ/γ'相界面处塞积,然后有新的棱柱型位错环产生.","authors":[{"authorName":"胡兴健","id":"39579fa5-b752-45d9-9275-7581da8ca7c5","originalAuthorName":"胡兴健"},{"authorName":"郑百林","id":"c58e5eed-129a-41d0-887e-6108eac27b1a","originalAuthorName":"郑百林"},{"authorName":"杨彪","id":"757c5b9f-6f66-4edc-8e5c-e0dfe6424afc","originalAuthorName":"杨彪"},{"authorName":"胡腾越","id":"dd524d4a-6be2-4a08-b254-1fce3143f356","originalAuthorName":"胡腾越"},{"authorName":"余金桂","id":"cedf2d86-481b-444b-b6db-7a665673f33b","originalAuthorName":"余金桂"},{"authorName":"贺鹏飞","id":"c27b10e4-5c97-4884-9f07-d359afd2b1ac","originalAuthorName":"贺鹏飞"},{"authorName":"岳珠峰","id":"7bbe1b37-ddb6-4178-b618-a64def14b114","originalAuthorName":"岳珠峰"}],"doi":"","fpage":"803","id":"940c4ccb-6fd9-4c3f-a8e0-54c5df3a894e","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"619a486e-c178-4248-aff7-506b100aaecc","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"2406e38b-6897-4c4a-9007-cf84077c7599","keyword":"压头尺寸","originalKeyword":"压头尺寸"},{"id":"6ac9ea9b-564f-42e6-be32-3327d5726ecd","keyword":"加载速度","originalKeyword":"加载速度"},{"id":"55dbcf7c-16a6-4551-8ab8-2ba074f4021e","keyword":"纳米压痕","originalKeyword":"纳米压痕"},{"id":"8d9824e4-44a7-4cda-b4d5-319afe47ac21","keyword":"位错","originalKeyword":"位错"}],"language":"zh","publisherId":"clkxygc201406005","title":"压头对Ni基单晶合金纳米压痕结果的影响","volume":"32","year":"2014"},{"abstractinfo":"提高运行频率可以增大功率密度,从而在维持效率一定的情况下有效减小制冷机的体积和重量.本文针对一台工作在100 Hz以上频率的气动斯特林制冷机开展了实验研究.实验表明,在一台商用线性压缩机驱动下,该制冷机可获得77.1 K的最低无负荷制冷温度,当工作在105 Hz,充气压力2.50 MPa时,可在100.0 K提供0.52 W制冷量.","authors":[{"authorName":"张小斌","id":"ebafa5d8-a145-4b96-8078-cc7cb7b4dcd4","originalAuthorName":"张小斌"},{"authorName":"王龙一","id":"2fea4930-613b-4d8f-9a47-9f6ce5724b7f","originalAuthorName":"王龙一"},{"authorName":"甘智华","id":"be1afdae-6af6-4784-a83a-51b730f2274c","originalAuthorName":"甘智华"},{"authorName":"袁园","id":"9510d267-a3ad-4049-8535-e2b6ed3b97e3","originalAuthorName":"袁园"},{"authorName":"葛志刚","id":"145afaf9-1fb0-47da-9278-2589f02b6316","originalAuthorName":"葛志刚"},{"authorName":"吴亦农","id":"6be25275-bfd3-4a5b-bda2-65baa91a9d6a","originalAuthorName":"吴亦农"}],"doi":"","fpage":"830","id":"c8c21869-85c7-4ea5-bb60-13808c2ec800","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fb4a08e4-bb04-4ef2-baf9-aec689d0eae3","keyword":"斯特林制冷机","originalKeyword":"斯特林制冷机"},{"id":"3e8edcad-d7ae-43d1-8e3b-3b2efe3afd3d","keyword":"气动","originalKeyword":"气动"},{"id":"e4b32a3c-2e6c-4785-ba10-6fe7d6501fde","keyword":"百赫兹","originalKeyword":"百赫兹"},{"id":"5f03972d-fc24-4b16-8656-7a247ed26d6a","keyword":"线性压缩机","originalKeyword":"线性压缩机"},{"id":"128d3860-716b-4615-9e89-c9b893f408f2","keyword":"实验","originalKeyword":"实验"}],"language":"zh","publisherId":"gcrwlxb201405002","title":"百赫兹气动斯特林制冷机实验研究","volume":"35","year":"2014"},{"abstractinfo":"以三个参量(纤维密集区域表征尺寸a、纤维密集区域的体积分数Vc以及该区域内纤维体积分数的偏差ΔVf)表示纤维分布的不均匀性,在假设任何一个纤维密集区域内包含了足够多数量的纤维以及密集区域在宏观上呈均匀分布的基础上,利用等效夹杂法分别讨论了ΔVf对细观裂纹产生的影响以及纤维密集区域的表征尺寸和体积分数对细观裂纹扩展的影响.这些结果有益于加深了解纤维分布不均匀性对复合材料性能的影响.","authors":[{"authorName":"贺鹏飞","id":"d00cdc9e-8037-4ea5-97b0-f01e7417be8c","originalAuthorName":"贺鹏飞"},{"authorName":"刘建萍","id":"0e2c2faf-b537-438e-91ac-9dc264709dc2","originalAuthorName":"刘建萍"},{"authorName":"戴瑛","id":"a30fc48c-9930-4e63-9aab-b39c203990a7","originalAuthorName":"戴瑛"},{"authorName":"郑百林","id":"47ca8cdb-3fc9-4948-a19f-b69f4b3b2fb9","originalAuthorName":"郑百林"}],"doi":"10.3969/j.issn.1000-3738.2000.01.004","fpage":"8","id":"253f8f61-ed38-4281-982e-c002d23e43eb","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"7f2e81d8-f44c-4b55-9806-d5ad680a94a8","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"8d0c689a-d0e7-408d-8aa8-89ba368e0c4d","keyword":"拉伸强度","originalKeyword":"拉伸强度"},{"id":"18b8eebf-b071-4b9b-a626-2bda0161b0ab","keyword":"细观力学","originalKeyword":"细观力学"}],"language":"zh","publisherId":"jxgccl200001004","title":"纤维分布不均匀对单向纤维增强复合材料横向拉伸强度的影响","volume":"24","year":"2000"},{"abstractinfo":"形状记忆高分子材料(SMP)具有优良的形状记忆功能,是继形状记忆合金(SMA)之后的又一热点研究领域.形状记忆机理的理论分析在SMP的研发与应用过程中起着至关重要的作用,理论分析往往对实验研究起着指导性的作用.目前对于形状记忆高分子材料记忆行为机理的理论研究还比较少.本文综述自形状记忆高分子材料发现20多年以来众多学者在形状记忆机理的理论方面的进展,并且对于今后理论研究的方向提出一些见解.","authors":[{"authorName":"杨青","id":"7aad5e81-cd08-4338-9bb8-1ab5ef8692dd","originalAuthorName":"杨青"},{"authorName":"郑百林","id":"907bcf07-bc03-423c-9d13-e6b5c000b02f","originalAuthorName":"郑百林"},{"authorName":"武秀根","id":"45803031-f5bc-418b-86b3-cdb50c4bba3b","originalAuthorName":"武秀根"},{"authorName":"贺鹏飞","id":"1b1e5966-414a-4920-883d-0737a87832ee","originalAuthorName":"贺鹏飞"}],"doi":"10.3969/j.issn.1001-4381.2006.z1.131","fpage":"492","id":"380bb46e-d2a4-4d39-97d8-da8e424115e5","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"ec0d3bf3-dada-4845-bc39-0cce431a7ce0","keyword":"形状记忆高分子材料","originalKeyword":"形状记忆高分子材料"},{"id":"516e0d75-727b-4508-bd4c-6f212a82a1f4","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"}],"language":"zh","publisherId":"clgc2006z1131","title":"形状记忆高分子材料记忆行为机理的理论分析","volume":"","year":"2006"},{"abstractinfo":"本文介绍了增强形状记忆聚合物的最新研究进展,详细探讨了各种增强材料对形状记忆聚合物的形状记忆效应的影响,总结了增强形状记忆聚合物研究的若干热点问题.","authors":[{"authorName":"武秀根","id":"60f5f2ab-1bad-4ec9-ae88-4b43e203aa99","originalAuthorName":"武秀根"},{"authorName":"郑百林","id":"d79f9b8e-d743-4d02-afdf-335f3ecf2e67","originalAuthorName":"郑百林"},{"authorName":"贺鹏飞","id":"2f29b097-d30e-4ec7-96a6-9d124dfa7e16","originalAuthorName":"贺鹏飞"},{"authorName":"杨青","id":"f25ad539-9baf-45d4-8e46-b162996d107c","originalAuthorName":"杨青"}],"doi":"10.3969/j.issn.1001-4381.2006.z1.112","fpage":"423","id":"7fc60fdf-91c8-4279-b875-9d861ee72f87","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"bcc25080-04cb-4d40-99bf-67c6cd4c4864","keyword":"增强形状记忆聚合物","originalKeyword":"增强形状记忆聚合物"},{"id":"822e7726-1160-46b2-a3b5-b2062619895f","keyword":"增强材料","originalKeyword":"增强材料"},{"id":"20aa1b69-14dd-4f7d-969a-d3d2a18857e6","keyword":"形状记忆效应","originalKeyword":"形状记忆效应"}],"language":"zh","publisherId":"clgc2006z1112","title":"增强形状记忆聚合物材料研究进展","volume":"","year":"2006"},{"abstractinfo":"本文提出了一种结构混杂的工艺制造GFRP,以改善材料的脆性,并对其进行了拉伸及破坏试验,试验结果表明,结构混杂GFRP棒的拉伸应力一应变曲线呈现出双线性特征。","authors":[{"authorName":"杨正光","id":"7a34bae8-da75-4773-a70e-8cbca9a410fb","originalAuthorName":"杨正光"},{"authorName":"郑百林","id":"c8257542-2521-4569-891a-dc8cb43fedae","originalAuthorName":"郑百林"},{"authorName":"贺鹏飞","id":"e3b6ca35-300e-47b7-b54a-8aacc8d1de0e","originalAuthorName":"贺鹏飞"},{"authorName":"李文晓","id":"03a82733-70d7-44fb-8b8f-85a3e0bc395e","originalAuthorName":"李文晓"},{"authorName":"薛元德","id":"9b5699ce-5ef0-4fb0-a49d-cceba1025536","originalAuthorName":"薛元德"},{"authorName":"仲政","id":"3b013e51-bcb6-4fda-8605-e3cfd727bff1","originalAuthorName":"仲政"}],"doi":"10.3969/j.issn.1003-0999.2001.03.003","fpage":"8","id":"b644d84e-6b4a-42f5-945c-8d0b3580ffa1","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"85e3009d-d720-4acc-aa99-4634cd3d11f4","keyword":"GFRP","originalKeyword":"GFRP"},{"id":"211affe5-7a20-4067-9724-b74f3a7e0259","keyword":"结构混杂","originalKeyword":"结构混杂"},{"id":"6cb0891c-b54a-4c1b-8a62-46a6aa265013","keyword":"双线性","originalKeyword":"双线性"}],"language":"zh","publisherId":"blgfhcl200103003","title":"结构混杂GFRP棒拉伸力学性能试验测试","volume":"","year":"2001"},{"abstractinfo":"
通过分子动力学方法, 研究了3种含相同半径、不同深度空洞的镍基单晶合金模型与理想模型纳米压痕过程的区别. 采用中心对称参数分析4种模型在不同压入深度时基体内部位错形核、长大的过程以及空洞和错配位错对纳米压痕过程的影响. 材料的压入荷载-压入深度曲线显示, 空洞最浅的模型与理想模型相差最大. 空洞对材料纳米压痕过程有2种作用, 当压入深度较浅时(h<0.375 nm), 空洞的存在会弱化材料, 而当压入深度处于0.375~0.567 nm之间时, 空洞表面的原子对位错的长大起到阻碍作用, 使得压入荷载增加; 空洞的坍塌会吸收一部分应变能, 减少γ相中层错的形成; 当空洞完全坍塌后, 位错会在空洞原始位置纠缠, 并产生大量层错, 使得压入荷载减小. γ/γ'相相界面存在空洞时, 当达到最大压入深度, 部分错配位错分解, 且被γ相表面吸收, 形成表面台阶. 处在最深位置的空洞并未对材料纳米压痕过程产生影响.
","authors":[{"authorName":"杨彪","id":"fd4a103c-14b9-46eb-ad48-af2f110b307d","originalAuthorName":"杨彪"},{"authorName":"郑百林","id":"5b79473c-9fa4-404a-8bef-4f759d7768cc","originalAuthorName":"郑百林"},{"authorName":"胡兴健","id":"ab727639-ed11-4b0e-9cfd-d6dc6ea7761d","originalAuthorName":"胡兴健"},{"authorName":"贺鹏飞","id":"bc8adbfe-dc40-4ab3-8b20-4182696900cc","originalAuthorName":"贺鹏飞"},{"authorName":"岳珠峰","id":"e27a2ed8-b598-483e-8d98-5bcfb052c717","originalAuthorName":"岳珠峰"}],"categoryName":"Orginal Article","doi":"10.11900/0412.1961.2015.00193","fpage":"129","id":"23e643e4-02ef-405b-90f1-86a3c3f1fe20","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4ec20271-478e-407f-bb0e-46cb3a68e5dd","keyword":"纳米压痕","originalKeyword":"纳米压痕"},{"id":"7424438c-761f-4029-8304-6da206f8ea4f","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"db8e38f8-ffd9-40d2-b25a-651abe802beb","keyword":"空洞","originalKeyword":"空洞"},{"id":"987154e7-1996-4e54-97ad-35352f15faee","keyword":"错配位错","originalKeyword":"错配位错"}],"language":"zh","publisherId":"C20150193","title":"空洞对镍基单晶合金纳米压痕过程的影响*","volume":"52","year":"2016"},{"abstractinfo":"采用Tersoff势对具有不同截面尺寸的β-SiC纳米丝的[001]向拉伸力学性能进行了分子动力学模拟,得到了纳米尺度下β-SiC纳米丝的应力-应变演化关系,研究了β-SiC纳米丝的力学性能与特征尺寸的关系.模拟结果表明,β-SiC纳米丝在常温下具有不同于宏观陶瓷材料的室温脆性,在断裂前发生了明显的塑性变形,塑性应变达到11%.截面尺寸对纳米丝的力学性能有显著的影响,截面尺寸越大,初始饧氏模量越大,抗拉强度越高.","authors":[{"authorName":"韩同伟","id":"c5c483f1-3151-4d92-9ed1-25b4b0a1ccba","originalAuthorName":"韩同伟"},{"authorName":"贺鹏飞","id":"a56e0a9b-3a3e-4366-8adf-1d875399aeaf","originalAuthorName":"贺鹏飞"},{"authorName":"王健","id":"4ebb3804-e262-427e-b97f-61833c624a44","originalAuthorName":"王健"},{"authorName":"郑百林","id":"8aba6e7a-9b99-4836-9279-2517d67435ab","originalAuthorName":"郑百林"}],"doi":"10.3321/j.issn:1005-3093.2009.04.001","fpage":"337","id":"fd24b716-c528-49af-8daf-2940842cdcd7","issue":"4","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"3f7c49d6-470c-482c-85ee-d703e324c149","keyword":"材料科学基础学科","originalKeyword":"材料科学基础学科"},{"id":"366fbf14-cedf-4f14-9e03-222d37470696","keyword":"拉伸力学性能","originalKeyword":"拉伸力学性能"},{"id":"2e93c2c4-c96d-48da-83e2-44d57995f745","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"309c2c84-a4bb-470c-814f-b8a853d55018","keyword":"β-SiC","originalKeyword":"β-SiC"},{"id":"8091f8df-b9f5-455e-a577-7817a3bd957f","keyword":"尺度效应","originalKeyword":"尺度效应"},{"id":"7102a176-1f4e-438e-b4b7-3e16b7ec2864","keyword":"纳米丝","originalKeyword":"纳米丝"}],"language":"zh","publisherId":"clyjxb200904001","title":"β-SiC纳米丝拉伸变形的分子动力学研究","volume":"23","year":"2009"},{"abstractinfo":"FRP筋作为钢筋增强混凝土的替代物已经在潮湿环境中的海堤工程、桥梁隧道、高层建筑、城市建设等基础设施的设计与施工中广泛使用.然而,FRP筋固有的脆性特征成为FRP筋进一步推广使用的障碍.在对FRP筋的综合研究基础上提出了包覆筋的概念,即包覆筋的芯由钢等高延展性的金属材料组成,包覆层由FRP组成.对新设计的FRP筋力学性能进行了理论推导,并给出了理论预测曲线.","authors":[{"authorName":"郑百林","id":"74df4659-0714-4a46-a756-8fb3accd457b","originalAuthorName":"郑百林"},{"authorName":"李伟","id":"59a0311a-e1de-4fc6-abe1-82c60d76c562","originalAuthorName":"李伟"},{"authorName":"张伟伟","id":"7d16f5aa-a642-44bf-b7e0-5481c9f6ea36","originalAuthorName":"张伟伟"},{"authorName":"贺鹏飞","id":"2bf18cdb-35ad-4f5f-9bf4-97f9d2d5adc5","originalAuthorName":"贺鹏飞"}],"doi":"10.3321/j.issn:1000-3851.2004.01.007","fpage":"33","id":"8f2a15bd-3e8e-4ade-82e8-ef2f668deaf1","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"420d7df9-2c71-4457-be71-ae68b48f41ea","keyword":"FRP筋","originalKeyword":"FRP筋"},{"id":"a132f8bd-8df2-4761-b7c1-9618e324985e","keyword":"包覆层","originalKeyword":"包覆层"},{"id":"96ef62a7-6612-4a44-a5ff-78a8f2c67de2","keyword":"微结构设计","originalKeyword":"微结构设计"}],"language":"zh","publisherId":"fhclxb200401007","title":"增强混凝土中FRP包覆筋研究(I):微结构设计","volume":"21","year":"2004"}],"totalpage":138,"totalrecord":1371}