{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"等离子体光子晶体等离子体学科和光子晶体学科交叉的产物,它不仅具有一般光子晶体的性质,而且还体现等离子体的特性,通过改变等离子体参数或外加磁场可有效控制其带隙.若在可调带隙的等离子体光子晶体中构造适当缺陷,则可形成可调滤波器和波导等器件,在工程方面具有重要应用.结合本课题组工作,综述了等离子体光子晶体的研究进展,在此基础上,展望了等离子体光子晶体的发展前景,为人们进一步研究等离子体光子晶体的特性和应用提供参考.","authors":[{"authorName":"亓丽梅","id":"f45f9590-a91e-4157-a617-3a1a635cc66d","originalAuthorName":"亓丽梅"},{"authorName":"傅涛","id":"c129df3f-2d8e-4c8d-93c2-751cdfa20955","originalAuthorName":"傅涛"},{"authorName":"杨梓强","id":"3c84a1a7-0d31-4046-812f-680b027fa56a","originalAuthorName":"杨梓强"},{"authorName":"殷淑容","id":"0de65e21-98a4-4e17-9524-b61c65899aaa","originalAuthorName":"殷淑容"}],"doi":"10.3969/j.issn.1007-5461.2012.05.001","fpage":"513","id":"0a2f31bb-558e-484a-aa9a-00daa4367ed4","issue":"5","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"5a2a8779-ab1f-4dbf-ac51-1b8d618fef54","keyword":"量子光学","originalKeyword":"量子光学"},{"id":"cf9ff8e4-3585-4130-ae5a-a37223a221b8","keyword":"可调带隙","originalKeyword":"可调带隙"},{"id":"ec7777b5-373a-4772-b473-0cdbc490647f","keyword":"等离子体参数","originalKeyword":"等离子体参数"},{"id":"423ca3ba-59f5-4a8b-a47e-095a5426f36d","keyword":"等离子体光子晶体","originalKeyword":"等离子体光子晶体"}],"language":"zh","publisherId":"lzdzxb201205001","title":"等离子体光子晶体研究进展","volume":"29","year":"2012"},{"abstractinfo":"利用双水电极介质阻挡放电装置,在空气和氩气组成的混合气体气体放电中,观察到了一种由放电丝自组织而形成的等离子体光子晶体.该晶体的结构由多个四边形的晶胞构成.每个晶胞由中心点、交叉点及连线组成,分别对应细等离子体柱、粗等离子体柱和片状等离子体.利用发射光谱法,研究了处于不同位置的等离子体状态,以及等离子体参量随着氩气含量的变化趋势.通过采集氮分子(N2)第二正带系(C3Πu→B3Πg)发射谱线,分别计算出了不同位置的等离子体的分子振动温度.通过氩原子696.57 nm(2P2→1S5)谱线的展宽,研究了不同位置的电子密度.实验结果表明:不同位置的等离子体具有不同的分子振动温度和电子密度.即他们所处的等离子体状态是不同的.在相同的氩气含量下,粗等离子体柱、细等离子体柱和片状等离子体的分子振动温度依次增高,且均随着氩气含量的增加而下降.在相同的氩气含量下,粗等离子体柱、细等离子体柱,片状等离子体的电子密度依次减小,且随着氩气含量的增加而下降.因为等离子体电子密度不同,对光的折射率是不同的,因此在该晶体结构中,粗等离子体柱、细等离子体柱,片状等离子体具有的折射率是不同的,他们与周围未放电的区域自组织形成了结构比较复杂的等离子体光子晶体.","authors":[{"authorName":"冯建宇","id":"2d8a24f6-80ed-4978-8550-6dfc0c043204","originalAuthorName":"冯建宇"},{"authorName":"董丽芳","id":"870d8abc-67cc-4183-afe7-b87d001e6b51","originalAuthorName":"董丽芳"},{"authorName":"魏领燕","id":"aab70ef7-6443-42fe-a736-2a63222eaa0f","originalAuthorName":"魏领燕"}],"doi":"","fpage":"328","id":"fdbc37a3-18c6-40d4-8844-be76b6a3231c","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"b27f43be-20e7-49d5-9d1e-43a221dd4b3b","keyword":"等离子体光子晶体","originalKeyword":"等离子体光子晶体"},{"id":"c6ca33bd-ffdd-4661-9220-1eafe350137c","keyword":"介质阻挡放电","originalKeyword":"介质阻挡放电"},{"id":"c6e18dbd-7cca-4a69-ad16-3ebcf3cbc955","keyword":"发射光谱","originalKeyword":"发射光谱"},{"id":"b4a9ab3c-a039-4d8b-8fac-7164576528d7","keyword":"等离子体参量","originalKeyword":"等离子体参量"}],"language":"zh","publisherId":"rgjtxb98201602006","title":"自组织等离子体光子晶体的光谱研究","volume":"45","year":"2016"},{"abstractinfo":"采用平板双水电极介质阻挡放电装置,通过放电丝的非线性自组织,在空气放电中获得不同对称性二维等离子体光子晶体.随外加电压升高,等离子体光子晶体经历了从等边三角晶格到四方晶格结构的转化.在实验测量数据的基础上,采用平面波展开方法计算了等离子体光子晶体转化过程中的带隙结构变化.提出了一种在空气放电中实现的新型可调等离子体光子晶体.","authors":[{"authorName":"范伟丽","id":"39977968-d9c2-469e-a273-3139d098870e","originalAuthorName":"范伟丽"},{"authorName":"董丽芳","id":"7b469a10-8d30-45ed-a61f-f25bda8d9080","originalAuthorName":"董丽芳"}],"doi":"","fpage":"1290","id":"3467a1fa-debb-4942-b97d-9fc564d6ece5","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e50672f3-be03-47b3-80c9-c4887a7293a5","keyword":"等离子体光子晶体","originalKeyword":"等离子体光子晶体"},{"id":"f38bee1e-acfc-4782-a892-d4f80f072764","keyword":"平面波展开方法","originalKeyword":"平面波展开方法"},{"id":"6f4eeb9a-8663-4b33-b453-efbcff5bbb3c","keyword":"带隙结构","originalKeyword":"带隙结构"}],"language":"zh","publisherId":"rgjtxb98201105040","title":"空气放电中自组织等离子体光子晶体研究","volume":"40","year":"2011"},{"abstractinfo":"利用基于有限元法的COMSOL软件仿真研究了在微波波段下二维点缺陷光子晶体缺陷模的特性.主要讨论了在TM模式下,点缺陷对透射系数的影响以及等离子体密度对二维点缺陷等离子体光子晶体透射系数的影响.重点研究了缺陷模与等离子体密度之间的关系,以及光子晶体的层数对缺陷模特性的影响.研究结果对微波段的多通道滤波器、波分复用器的设计和制作提供了理论参考.","authors":[{"authorName":"杨东瑾","id":"d2662cba-b1eb-407d-8922-0827b1d187b1","originalAuthorName":"杨东瑾"},{"authorName":"谭海云","id":"d1764e1c-279f-40c2-b6d0-2f885365f768","originalAuthorName":"谭海云"},{"authorName":"金成刚","id":"b01c7989-e6cf-414c-8e7c-8acf34408d87","originalAuthorName":"金成刚"},{"authorName":"诸葛兰剑","id":"dc5ef29e-4434-4fbb-9905-c25829920a7f","originalAuthorName":"诸葛兰剑"},{"authorName":"吴雪梅","id":"c6168d07-e2cd-4b2e-b58f-b046776f4acc","originalAuthorName":"吴雪梅"}],"doi":"10.3969/j.issn.1001-9731.2017.05.007","fpage":"5037","id":"b8ee3367-34ad-4a46-88fb-9164164ec78c","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"14264cce-069a-4ee3-9fb7-3b97a742616e","keyword":"微波","originalKeyword":"微波"},{"id":"528fd42d-9e08-4a3f-94bd-7a48170fbbb6","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"dd32d2d6-5e8f-46c5-94e3-829e57025e76","keyword":"点缺陷","originalKeyword":"点缺陷"},{"id":"26e261bb-4fb9-4028-ba64-58bf3e9a8493","keyword":"光子晶体","originalKeyword":"光子晶体"},{"id":"c15a69b6-14f2-4d86-85af-14434a400e97","keyword":"缺陷模","originalKeyword":"缺陷模"}],"language":"zh","publisherId":"gncl201705007","title":"二维点缺陷等离子体光子晶体缺陷模特性研究","volume":"48","year":"2017"},{"abstractinfo":"提出了一种夸克-胶子等离子体中的喷注-光子转换机制.对于热光子而言,在热夸克-胶子媒介中的喷注-光子转换是一个非常重要的热光子来源.喷注可以通过次级康普顿散射和湮灭过程来实现喷注-光子转换.此外,还考虑了在快光子产生过程中起重要修正作用的胶子-光子贡献,其中,核遮蔽效应和同位旋效应也被引入到了部分子模型中.","authors":[{"authorName":"傅永平","id":"73c5a3d6-022d-4aa8-a825-2bb8b891c774","originalAuthorName":"傅永平"},{"authorName":"李云德","id":"1a8c42d6-c88c-48ab-8a97-5028964f8da2","originalAuthorName":"李云德"}],"doi":"","fpage":"16","id":"f22a7f19-76b6-44a2-884d-aa6871acb555","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"e348f93a-cc17-4867-88f6-7e9ba58aa53e","keyword":"夸克-胶子等离子体","originalKeyword":"夸克-胶子等离子体"},{"id":"4902ee2e-c602-4044-a0f4-2f5be46590eb","keyword":"喷注-光子转换","originalKeyword":"喷注-光子转换"},{"id":"f7d381be-f141-4657-9be2-49118462eb89","keyword":"光子产生","originalKeyword":"光子产生"}],"language":"zh","publisherId":"yzhwlpl201001002","title":"夸克-胶子等离子体中的喷注-光子转换机制","volume":"27","year":"2010"},{"abstractinfo":"本文研究了金纳米棒的局域表面等离子体共振效应在双光子聚合过程中的作用,即当激发光与金纳米棒表面等离子体共振波长相匹配时,会在金纳米棒表面产生很强的局域电磁场,从而引发双光子聚合.通过采用与金纳米棒表面等离子体共振波长相同的飞秒激光,在低于光刻胶聚合阈值的功率下照射含有金纳米棒的光刻胶,制备聚合物包覆金纳米棒的纳米复合材料.透射电子显微镜结果表明,当飞秒激光功率为0.6W、光斑直径为1.6 cm、照射时间为0.3s时,金纳米棒表面成功聚合上厚度为5 nm左右的聚合物.本研究在制备聚合物/金属纳米粒子方面提供了一种简单可行的方法,有望在纳米光子学、纳米传感器等新兴领域得到应用.","authors":[{"authorName":"张金龙","id":"2e409426-0b67-4378-8d03-6b36cf8b5664","originalAuthorName":"张金龙"},{"authorName":"郑美玲","id":"f318da2e-a724-42a4-b25f-19c928a7913d","originalAuthorName":"郑美玲"},{"authorName":"金峰","id":"3c576466-8435-4167-b549-15fe1fa0bb83","originalAuthorName":"金峰"},{"authorName":"董贤子","id":"0571f439-9a01-4c6d-a0db-0504b3ddeb3a","originalAuthorName":"董贤子"},{"authorName":"陈述","id":"199366a7-c08a-4280-a311-390ddbb24ed5","originalAuthorName":"陈述"},{"authorName":"赵震声","id":"2badc914-368b-42cb-831b-1bb1fb3b93b0","originalAuthorName":"赵震声"},{"authorName":"段宣明","id":"4739bce0-187d-4113-b0d8-82909a093733","originalAuthorName":"段宣明"}],"doi":"10.7517/j.issn.1674-0475.2014.03.267","fpage":"267","id":"7ec8f5a2-98df-4631-8683-8c9e3dea957e","issue":"3","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"f1eb22d5-823a-4f69-830c-d085d396557d","keyword":"金纳米棒","originalKeyword":"金纳米棒"},{"id":"bbf82f3d-bd47-441b-8924-5c6ca21fcc46","keyword":"飞秒激光","originalKeyword":"飞秒激光"},{"id":"e5b26258-228b-4f64-b5da-446d3c14e01b","keyword":"双光子聚合","originalKeyword":"双光子聚合"},{"id":"fea2ea9b-c53c-4906-b129-03c5182f8d06","keyword":"金属/聚合物纳米复合材料","originalKeyword":"金属/聚合物纳米复合材料"}],"language":"zh","publisherId":"ggkxyghx201403005","title":"局域表面等离子体共振辅助的金纳米棒/聚合物纳米复合材料的双光子聚合","volume":"32","year":"2014"},{"abstractinfo":"在微波等离子体化学气相沉积系统中,利用脉冲氮离子束溅射二氰二氨靶产生的碳氮粒子作为合成前驱物,在石英玻璃基片上研究了SiCN晶体的合成.用扫描电子显微镜(SEM)、X射线能谱(EDX)、X射线衍射(XRD)和X射线光电子能谱(XPS)研究了基片温度对薄膜的形貌、成分和结构的影响.结果表明:随着基片温度的降低,沉积物由截面为六方形的结晶良好的SiCN晶体(800℃)变成发育不完全的聚片状晶体(700℃),直到变成颗粒细小的无定形碳氮薄膜(550℃).衍射峰的强度以及晶胞参数a和c的值随温度的降低而减小.薄膜为C原子部分取代Si_3N_4中的Si原子位置而形成的SiCN晶体,其中N原子主要与Si原子结合,C原子以sp~3C-N、sp~2C=N和sp~2C=C键的形式存在.降低基片温度有利于提高薄膜中的C含量和sp~3C-N键的含量.","authors":[{"authorName":"万军","id":"a78d3812-ec4b-4bea-9095-408952598064","originalAuthorName":"万军"},{"authorName":"马志斌","id":"8b040c2b-7a94-47bd-8266-44a5772a122a","originalAuthorName":"马志斌"},{"authorName":"曹宏","id":"8f92282f-e224-4dab-93fd-b2ae15abb3cf","originalAuthorName":"曹宏"},{"authorName":"吴振辉","id":"217d35e9-fb3e-443f-8706-9b8985fdb5b3","originalAuthorName":"吴振辉"},{"authorName":"汪建华","id":"7a975bc0-9aa1-43ef-828f-15802f0a47da","originalAuthorName":"汪建华"}],"doi":"","fpage":"48","id":"288c670e-0c86-4805-8097-e44857b7a5a4","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"efa70981-1bf6-4d57-b448-a7350d2246c2","keyword":"SiCN晶体","originalKeyword":"SiCN晶体"},{"id":"9d2436ac-9148-40da-a4a2-a68a991b3729","keyword":"微波等离子体","originalKeyword":"微波等离子体"},{"id":"dd1da616-244a-4bc1-b289-97a42d73d5aa","keyword":"溅射","originalKeyword":"溅射"},{"id":"25f8683f-8788-4ac9-9403-016638c53851","keyword":"二氰二氨","originalKeyword":"二氰二氨"}],"language":"zh","publisherId":"xxtcl201001008","title":"溅射辅助微波等离子体化学气相沉积SiCN晶体","volume":"","year":"2010"},{"abstractinfo":"利用微波等离子体化学气相沉积系统,以甲烷、氮气和氢气作为气源,在Si(100)衬底上成功地制备出了碳氮晶体薄膜,并对两种衬底温度下的薄膜性质进行了比较.用高分辨率场发射扫描电子显微镜观察薄膜,可以看出晶型完整,结构致密,结晶质量较好.X射线能谱证明了碳氮是以C-N和C=N共价键的形式存在,氮碳元素的原子比均为1.3.X射线衍射确定出在衬底温度为900410℃时薄膜样品的主要晶相成份是α-C3N4,β-C3N4,赝立方C3N4,立方C3N4和一个未知相(面间距d=0.4002nm),而在950±10℃时薄膜样品的主要晶相成份是α-C3N4,β-C3N4,赝立方C3N4,类石墨C3N4和一个未知相(面间距d=0.3984nm).喇曼光谱分析也证实了薄膜中主要存在α-C3N4,β-C3N4相.","authors":[{"authorName":"江锦春","id":"dbb43969-11bd-4ec0-81e4-b04648afb305","originalAuthorName":"江锦春"},{"authorName":"程文娟","id":"d3281f97-7e42-4f0f-8886-1bf6957c58c5","originalAuthorName":"程文娟"},{"authorName":"张阳","id":"74d5ac40-9c3e-4b65-9c46-0b1d11fbf219","originalAuthorName":"张阳"},{"authorName":"朱鹤孙","id":"5836749a-ccb1-4055-8633-b1f2e71c0899","originalAuthorName":"朱鹤孙"},{"authorName":"沈德忠","id":"38e1bf66-e349-4211-8e12-83bea02aee67","originalAuthorName":"沈德忠"}],"doi":"10.3969/j.issn.1000-985X.2004.06.012","fpage":"930","id":"14d716c0-a08d-43a4-a001-8329eb685f6f","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"9e2737f5-d23f-4d92-aba6-936f902de4d5","keyword":"C3N4晶体","originalKeyword":"C3N4晶体"},{"id":"51ef6d3b-1922-4a6c-8d13-2b55daf614fd","keyword":"微波等离子体化学汽相沉积","originalKeyword":"微波等离子体化学汽相沉积"},{"id":"1444f7cc-b0b2-4ec5-b929-481cc8654a8a","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"rgjtxb98200406012","title":"微波等离子体化学气相沉积制备碳氮晶体薄膜","volume":"33","year":"2004"},{"abstractinfo":"采用加热的调谐单探针技术,研究了射频辉光放电Ar等离子体空间电子能量分布函数,电子平均能量和电子密度,并系统分析了等离子体增强化学气相沉积工艺参量对等离子体空间电子特性的影响.","authors":[{"authorName":"魏俊红","id":"63be274b-007d-437d-91ce-9e6a84df1675","originalAuthorName":"魏俊红"},{"authorName":"林璇英","id":"fcbac941-5661-4ea5-85e2-b03d914a1b25","originalAuthorName":"林璇英"},{"authorName":"赵韦人","id":"5223bc85-a201-4ef7-a6c3-ca6384d5d16d","originalAuthorName":"赵韦人"},{"authorName":"池凌飞","id":"e173d84d-f7d4-4121-8e15-ef463ff57083","originalAuthorName":"池凌飞"},{"authorName":"余云鹏","id":"0f3cd2b3-b718-4a5d-b72f-3a31e3b1c906","originalAuthorName":"余云鹏"},{"authorName":"林揆训","id":"c48337d0-29f7-4a93-bbf6-ee07ef98b05a","originalAuthorName":"林揆训"},{"authorName":"黄锐","id":"344ed0c6-10f4-40d7-89fa-3031698a8765","originalAuthorName":"黄锐"},{"authorName":"王照奎","id":"f63d9f48-82ad-4d14-aa6e-5b5a09ab9c7f","originalAuthorName":"王照奎"},{"authorName":"余楚迎","id":"99520e66-093b-44a9-bfaa-7995c3a0c613","originalAuthorName":"余楚迎"}],"doi":"","fpage":"755","id":"8574b65f-4ad3-4f7c-b96b-daec1c98d7a4","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5e101bb3-a68b-4226-a323-288fe65d573b","keyword":"调谐单探针","originalKeyword":"调谐单探针"},{"id":"35bf6ab4-b559-4f62-992a-699068bcbe86","keyword":"等离子体化学气相沉积","originalKeyword":"等离子体化学气相沉积"},{"id":"20e9dc6b-2ab7-4fb5-9e1c-c3a7a9a78676","keyword":"Ar等离子体","originalKeyword":"Ar等离子体"}],"language":"zh","publisherId":"gncl200406032","title":"等离子体化学气相沉积参量对Ar等离子体电子特性的影响","volume":"35","year":"2004"},{"abstractinfo":"低温等离子体是空间主要环境之一,近年来也被广泛应用于能源、航空、环境科学、国防及材料表面改性等方面.详细的分析了等离子体诊断的常用方法和适用范围,认为准确进行等离子体诊断取决于两大因素,一是测量准确度(灵敏度),二是测试系统不对等离子体产生较大扰动.","authors":[{"authorName":"刘晓东","id":"566fd258-8c58-4abe-bd74-bd27646e8d1d","originalAuthorName":"刘晓东"},{"authorName":"郑晓泉","id":"32fadd4c-2dd1-4f97-b79f-3d1579b68ca9","originalAuthorName":"郑晓泉"},{"authorName":"张要强","id":"3ebb117c-d292-453d-89d5-8c2959ca9f4f","originalAuthorName":"张要强"},{"authorName":"曲文波","id":"1f3f1e74-cfdd-4abd-8e68-da1ebce1233f","originalAuthorName":"曲文波"}],"doi":"10.3969/j.issn.1009-9239.2006.02.013","fpage":"43","id":"defd0108-83d6-4ff0-8a4e-81e803f6c2b4","issue":"2","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"67556934-013c-4856-b308-293ba74cfc90","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"5571b7e8-3dec-4e5e-98e6-1ffca7c583bc","keyword":"郎缪尔探针法","originalKeyword":"郎缪尔探针法"},{"id":"0a57fad8-44b3-455e-b479-7f218c92d433","keyword":"微波透射法","originalKeyword":"微波透射法"},{"id":"0775b43b-9b38-46ac-98f9-c791c1bdabea","keyword":"光谱法","originalKeyword":"光谱法"}],"language":"zh","publisherId":"jycltx200602013","title":"低温等离子体的诊断方法","volume":"39","year":"2006"}],"totalpage":5019,"totalrecord":50188}