{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"制备了(NiPc)-Fe3O4纳米复合粒子,研究了其化学稳定性和磁性能.结果表明,NiPc在Fe3O4纳米粒子表面形成了复合层,并且它们之间形成了一定程度的化学键.NiPc复合层可有效地保护Fe3O4纳米粒子不被空气氧化,显著提高了其抗氧化能力,并降低了其矫顽力.","authors":[{"authorName":"黄俊","id":"abaea3b4-bffa-4889-9f94-1b256b40faad","originalAuthorName":"黄俊"},{"authorName":"官建国","id":"18d22fce-3771-4f69-a60d-7accd8006c7d","originalAuthorName":"官建国"},{"authorName":"袁润章","id":"dc233e6d-8aec-435a-aaa1-88c0e7da6943","originalAuthorName":"袁润章"}],"doi":"10.3321/j.issn:1000-3851.1999.04.007","fpage":"35","id":"eaeab2f7-df63-49b7-8dbb-3d4f8113ca50","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"cfff3734-1d0d-4b83-9cda-eaf4949d84e9","keyword":"","originalKeyword":"酞菁镍"},{"id":"5af385bd-3739-4814-a853-85dd4bdbfca4","keyword":"纳米复合粒子","originalKeyword":"纳米复合粒子"},{"id":"2664a3d1-fde0-429f-9df3-a2768e79b929","keyword":"抗氧化","originalKeyword":"抗氧化"},{"id":"142ffba9-269c-4a08-b294-f714c86f1049","keyword":"Fe3O4","originalKeyword":"Fe3O4"}],"language":"zh","publisherId":"fhclxb199904007","title":"Fe3O4纳米复合粒子研究","volume":"16","year":"1999"},{"abstractinfo":"介绍了、亚和超的典型结构及其吸收光谱,分别介绍了和亚的衍生物、缩合物的结构与最大吸收波长之间的关系以及它们潜在的应用前景,同时分析讨论了几种扩展的类似物的结构特点和它们吸收性能差的原因.","authors":[{"authorName":"白青龙","id":"9175887e-c2d0-4776-9b70-54e17ed2a831","originalAuthorName":"白青龙"},{"authorName":"张春花","id":"6be09f70-952c-4f44-9d4a-ef534e8cd683","originalAuthorName":"张春花"},{"authorName":"夏道成","id":"b40f17c3-8575-4c22-ada3-acd49a4f4e05","originalAuthorName":"夏道成"},{"authorName":"程传辉","id":"6e9c94de-91ad-4ace-8c5d-202babaccc7e","originalAuthorName":"程传辉"},{"authorName":"范昭奇","id":"2f56a2ef-b944-4652-8067-2c34680ef3a7","originalAuthorName":"范昭奇"},{"authorName":"杜国同","id":"8596e7f1-7145-44a2-855b-f44c9d14cfc3","originalAuthorName":"杜国同"}],"doi":"","fpage":"61","id":"e5b99d2c-4c42-4960-a20a-27b7b5e90f63","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"27c640a2-0ed7-4a35-a297-b4419d3e6f99","keyword":"","originalKeyword":"酞菁"},{"id":"895f2804-2a21-4203-a816-c15aaf4876c0","keyword":"类","originalKeyword":"类酞菁"},{"id":"1f19f180-410e-4e04-87a0-11655599e513","keyword":"结构","originalKeyword":"结构"},{"id":"f9e027ac-259f-4dc1-8188-e93b40908565","keyword":"紫外光谱","originalKeyword":"紫外光谱"}],"language":"zh","publisherId":"cldb201007014","title":"及类的结构与紫外可见光谱研究","volume":"24","year":"2010"},{"abstractinfo":"分析了(NiPc)与Fe3O4纳米粒子的复合过程,提出了其复合机理.研究并建立了NiPc-Fe3O4纳米复合粒子的结构模型.","authors":[{"authorName":"黄俊","id":"919b737e-6637-4781-a6c5-6d49ec0046a9","originalAuthorName":"黄俊"},{"authorName":"姜德生","id":"7a58895e-b6ba-4958-bce7-1a4b39bf4689","originalAuthorName":"姜德生"},{"authorName":"官建国","id":"3ef3db20-6278-43b2-a4ac-11ed1247aff1","originalAuthorName":"官建国"},{"authorName":"袁润章","id":"5b973f39-4521-4c6f-a19d-147af9a2f2df","originalAuthorName":"袁润章"}],"doi":"10.3321/j.issn:1000-3851.2001.02.019","fpage":"81","id":"7da29f07-07bb-4f1e-b625-4d7db3ed91b2","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"f1cb85e4-173f-4256-b130-6afe8d359705","keyword":"NiPc-Fe3O4纳米复合粒子","originalKeyword":"NiPc-Fe3O4纳米复合粒子"},{"id":"83d48ef7-b8ff-4d2c-a936-843a6d4bccc3","keyword":"复合机理","originalKeyword":"复合机理"},{"id":"ad47a748-2a93-4c15-bb88-be8c45bbe946","keyword":"结构模型","originalKeyword":"结构模型"}],"language":"zh","publisherId":"fhclxb200102019","title":"与Fe3O4纳米粒子的复合机理及复合粒子的结构模型","volume":"18","year":"2001"},{"abstractinfo":"微波合成与传统合成方法相比因具有效率高、节省能源、产品纯度高、安全等优点已被广泛应用.以金属的存在形式分类,分别从金属单体、金属聚合体、改性金属及金属复合材料4方面概述了近几年国内外对金属微波合成的研究进展,并与传统的合成方法进行了对比,展望了微波合成的发展前景.","authors":[{"authorName":"杨琴","id":"f00dc72d-8a6e-47ce-93c3-900073c3dafe","originalAuthorName":"杨琴"},{"authorName":"杨永利","id":"50f14fb6-7419-4871-8c44-f02fe118f7e4","originalAuthorName":"杨永利"},{"authorName":"李丹","id":"bedb11d0-3aec-441d-8fa9-2cc1a6a2df3b","originalAuthorName":"李丹"}],"doi":"","fpage":"129","id":"f9e334c2-eae4-4579-84bc-cdfef366f7f7","issue":"21","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9471f685-7b6b-4ea2-8500-046496c3bd9e","keyword":"金属","originalKeyword":"金属酞菁"},{"id":"8769bc89-1762-4729-b5c8-0184fd528733","keyword":"微波合成","originalKeyword":"微波合成"},{"id":"d42cf699-7189-4e21-857d-d2ab286135b5","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"cldb201121027","title":"金属的微波合成研究进展","volume":"25","year":"2011"},{"abstractinfo":"采用以2,5-二甲基呋喃(DMFU)为探针,通过气相色谱内标法测定了4种中心金属(Zn(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Co(Ⅱ))、4种取代基及α位或β位取代的28种含氮芳氧基取代金属配合物新物种光敏产生单线态氧(1O2)的速率常数.讨论了中心金属电子结构、取代基类型及取代位置对金属配合物光敏产生1O2能力的影响.结果表明,它们产生1O,的能力有很大差异:(1)相同取代基在相同位置取代情况下,中心金属为锌的配合物光敏产生1O,的能力均好于中心金属为铜、钴、配合物;(2)氮杂芳氧基取代锌光敏产生1O,的速率常数显著大于相应位置氨基苯氧基取代锌的;(3)α位氮杂芳氧基取代锌光敏产生1O2的速率常数均大于相应取代基β位取代锌的.","authors":[{"authorName":"李旭飞","id":"ddd006d6-db97-4527-8d9a-0c5dfc9e1476","originalAuthorName":"李旭飞"},{"authorName":"薛金萍","id":"13ddac78-7d56-45c6-b29c-bee54f06a420","originalAuthorName":"薛金萍"},{"authorName":"陈耐生","id":"a10e196a-6c89-4a29-943e-45afec1d4ec3","originalAuthorName":"陈耐生"},{"authorName":"黄金陵","id":"7615aebf-8b15-4c48-8b96-81ef0ba73ca9","originalAuthorName":"黄金陵"}],"doi":"10.3969/j.issn.1000-0518.2007.09.015","fpage":"1041","id":"8e8865e6-f7a7-48c2-a437-3939a07a2f5e","issue":"9","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"d3dc32ff-c01a-403a-988c-c6136233af11","keyword":"含氮芳氧基","originalKeyword":"含氮芳氧基"},{"id":"622a78a9-fd95-44d3-b3e1-92283857489b","keyword":"金属配合物","originalKeyword":"酞菁金属配合物"},{"id":"1fd466c8-c0b9-41a4-a340-1418f702f90e","keyword":"光敏产生","originalKeyword":"光敏产生"},{"id":"5efe48a2-5bcb-415f-903e-83ea1bbb30ac","keyword":"单线态氧","originalKeyword":"单线态氧"}],"language":"zh","publisherId":"yyhx200709015","title":"含氮芳氧基取代金属配合物光敏产生1O2","volume":"24","year":"2007"},{"abstractinfo":"研究了钴(CoPc)作为电化学催化剂,对MH/Ni电池性能的影响.实验结果表明,采用合适的添加方式,钴能够明显降低电池的内压升高速度,大幅度提高电池的充放电效率以及耐过充能力,抑制合金的氧化腐蚀.添加钴的MH/Ni电池在容量衰减、内压、大电流放电等方面的性能均有显著提高.","authors":[{"authorName":"王芳","id":"5c66be89-0edd-4821-b6f4-de33dff74d9b","originalAuthorName":"王芳"},{"authorName":"吴锋","id":"1cbedddc-144b-4db8-8e9b-67dcccd3970c","originalAuthorName":"吴锋"},{"authorName":"王敬","id":"2c533108-383b-4a38-95dc-36f02bc28459","originalAuthorName":"王敬"},{"authorName":"陈实","id":"a681a972-69cb-4c20-9017-67e17ed539a5","originalAuthorName":"陈实"},{"authorName":"王国庆","id":"cbff8c32-3158-4b86-86ac-47c477c5c597","originalAuthorName":"王国庆"}],"doi":"","fpage":"606","id":"cf42a6c5-9115-48ef-88ff-0b1ec10d0688","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"686050b3-c02b-4113-b387-dae39b18af8d","keyword":"MH/Ni电池","originalKeyword":"MH/Ni电池"},{"id":"601249b9-3e68-46f3-99e8-d44319295be1","keyword":"钴","originalKeyword":"酞菁钴"},{"id":"9ad68726-1aee-444a-98c7-1a82c728c881","keyword":"电化学催化剂","originalKeyword":"电化学催化剂"},{"id":"8592dd1d-0ca9-49a0-b85e-c6c6ed295862","keyword":"内压","originalKeyword":"内压"}],"language":"zh","publisherId":"gncl200405026","title":"钴对MH/Ni电池性能的影响","volume":"35","year":"2004"},{"abstractinfo":"制备了用于配制水性木器色漆的水性蓝色浆,研究了颜料、润湿分散剂、消泡剂、防冻剂、防霉杀菌剂等原料对色浆及色漆产品性能的影响,确定了有关助剂的种类和用量.研制的水性蓝色浆固含量35.62%,细度20 μm,VOC含量112 g/L,用其配制的水性木器涂料达到有关标准要求.","authors":[{"authorName":"曾羽燕","id":"6797beaa-8f2f-4bdd-a331-19124937c596","originalAuthorName":"曾羽燕"},{"authorName":"张旭东","id":"88850355-f2cf-4d3c-a8b6-8b0c8502a3e6","originalAuthorName":"张旭东"},{"authorName":"曾秀娜","id":"bb730c58-5a7f-4536-9d2d-3665edfffe0e","originalAuthorName":"曾秀娜"},{"authorName":"董凡","id":"8f92fa83-fdf0-48f6-a628-d1580cb9a053","originalAuthorName":"董凡"}],"doi":"10.3969/j.issn.0253-4312.2010.04.014","fpage":"51","id":"086a46a5-aebb-4bf6-8658-e63bd5968cd3","issue":"4","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"dbbf49b9-1450-4d05-9bf1-b94fc5d4c96c","keyword":"水性色浆","originalKeyword":"水性色浆"},{"id":"62b87391-2c7b-42c1-9f90-926d60115c92","keyword":"蓝","originalKeyword":"酞菁蓝"},{"id":"d0591534-9472-48e7-be0e-ccbbda5f6129","keyword":"助剂","originalKeyword":"助剂"},{"id":"c4699c6c-251d-4ed5-9e33-671880794e8e","keyword":"木器漆","originalKeyword":"木器漆"}],"language":"zh","publisherId":"tlgy201004014","title":"水性木器涂料用蓝色浆的研制","volume":"40","year":"2010"},{"abstractinfo":"通过失重实验、电化学测试和扫描电子显微镜研究了无金属(H2Pc)、铜(CuPc)和锌(ZnPc) 在1 mol/L H2SO4中对碳钢的缓蚀作用.结果表明,3种化合物的缓蚀能力依次为ZnPc > CuPc > H2Pc,其吸附数据均符合Langmuir等温式;它们能同时抑制碳钢在H2SO4中腐蚀的阴极和阳极过程,电化学阻抗谱显示,为变形的单容抗弧,阻抗值随化合物浓度增加而增加;表面形貌分析也证明了化合物的加入提高了碳钢的表面完整性,抑制其腐蚀;量子化学计算结果显示,随着分子的最低空轨道(LUMO)的能量升高,化合物的缓蚀能力降低.","authors":[{"authorName":"赵澎","id":"9ff35935-0d91-4670-a317-edfaa3e21cb4","originalAuthorName":"赵澎"},{"authorName":"李焰","id":"511fbb6c-edb6-4f00-9f31-3cf69b11c704","originalAuthorName":"李焰"},{"authorName":"梁强","id":"c682cc66-3973-4eb4-822c-56a9b6718b92","originalAuthorName":"梁强"}],"categoryName":"|","doi":"","fpage":"235","id":"4380494d-82bf-4022-b535-2d8534d9ff2b","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"a33d397a-dd1e-4aa4-9f53-914f755f2213","keyword":"化合物","originalKeyword":"酞菁化合物"},{"id":"697d1bd8-dd0b-444c-a3ad-aa469ba022f1","keyword":"null","originalKeyword":"null"},{"id":"f713fb85-af4d-423c-8bf6-eeab797c21c7","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2006_4_13","title":"无金属铜和锌在1 mol/L H2SO4中对Q235钢的缓蚀作用","volume":"18","year":"2006"},{"abstractinfo":"通过失重实验、电化学测试和扫描电子显微镜研究了无金属(H2Pc)、铜(CuPc)和锌(ZnPc)在1mol/L H2SO4中对碳钢的缓蚀作用.结果表明,3种化合物的缓蚀能力依次为ZnPc>CuPc>H2Pc,其吸附数据均符合Langmuir等温式;它们能同时抑制碳钢在H2SO4中腐蚀的阴极和阳极过程,电化学阻抗谱显示,为变形的单容抗弧,阻抗值随化合物浓度增加而增加;表面形貌分析也证明了化合物的加入提高了碳钢的表面完整性,抑制其腐蚀;量子化学计算结果显示,随着分子的最低空轨道(LUMO)的能量升高,化合物的缓蚀能力降低.","authors":[{"authorName":"赵澎","id":"a7ecd9fb-7bab-46e0-b3e8-2df6ad9b0487","originalAuthorName":"赵澎"},{"authorName":"李焰","id":"1d4529af-3e06-44f4-81cf-54b5a7a6db13","originalAuthorName":"李焰"},{"authorName":"梁强","id":"2be0376a-0c91-44a0-bf72-86de44dab33c","originalAuthorName":"梁强"}],"doi":"10.3969/j.issn.1002-6495.2006.04.001","fpage":"235","id":"2280a59f-25f6-407d-ae64-d4fe2bdb6f7c","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"766e6461-820a-4377-9ab1-eae111548e9e","keyword":"化合物","originalKeyword":"酞菁化合物"},{"id":"4fd7a74a-6ae7-4ac4-ae4e-e2edb332054d","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"8990559a-f391-4368-9c5d-9fc9432515ed","keyword":"电化学实验","originalKeyword":"电化学实验"},{"id":"28fe7bb2-a29c-474e-938d-c89495aecfcc","keyword":"SEM","originalKeyword":"SEM"},{"id":"924da06d-532c-4219-bafc-3d1ab3608fce","keyword":"量子化学","originalKeyword":"量子化学"}],"language":"zh","publisherId":"fskxyfhjs200604001","title":"无金属铜和锌在1 mol/L H2SO4中对Q235钢的缓蚀作用","volume":"18","year":"2006"},{"abstractinfo":"磺化金属主要用作液化气脱硫醇过程碱液氧化再生催化剂.为研究磺化金属易于失活的影响因素,对比探讨了5种磺化金属(Fe、Co、Ni、Cu、Zn)在相同溶剂以及不同溶剂中的聚集作用,并研究了聚集对催化氧化硫醇活性的影响.结果表明,磺化金属聚集受溶剂影响较大,溶剂极性越强,聚集越严重;磺化金属溶液放置时间越长,磺化金属聚集体粒径越大;金属种类不同,对磺化金属聚集也有影响.聚集导致CoSPc、CuSPc催化氧化硫醇活性显著降低20%左右.","authors":[{"authorName":"程振华","id":"ee140527-f703-43f4-b63f-05fe502ee43d","originalAuthorName":"程振华"},{"authorName":"崔娜","id":"72973e56-ddc8-4674-b1cb-d6b5354cb470","originalAuthorName":"崔娜"},{"authorName":"宋兆阳","id":"eb92e9ab-194e-4b95-b89d-575bddf5b1cd","originalAuthorName":"宋兆阳"},{"authorName":"江胜娟","id":"545fef59-3553-4cb4-b523-4d0f14904aaa","originalAuthorName":"江胜娟"},{"authorName":"朱丽君","id":"017060f1-6ce7-42dd-8f0b-930f82184b0b","originalAuthorName":"朱丽君"},{"authorName":"夏道宏","id":"7afb96a7-57de-40b0-90d8-9f145abbd486","originalAuthorName":"夏道宏"}],"doi":"10.11944/j.issn.1000-0518.2016.02.150245","fpage":"155","id":"d98c91fc-e9b6-4fc5-84dc-72df502f9e61","issue":"2","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"62fa73bb-1bf4-48ff-8a88-a32f6548d83f","keyword":"液化气脱臭","originalKeyword":"液化气脱臭"},{"id":"3f32db80-faf0-491f-bced-ef5fd6ecaba6","keyword":"磺化金属","originalKeyword":"磺化酞菁金属"},{"id":"36ac69b3-1892-42b3-9506-30babb962d6b","keyword":"聚集","originalKeyword":"聚集"},{"id":"5507b39e-194e-42b7-91a1-cc6cace6bf47","keyword":"催化氧化硫醇","originalKeyword":"催化氧化硫醇"}],"language":"zh","publisherId":"yyhx201602005","title":"磺化金属的聚集及对催化氧化硫醇性能影响","volume":"33","year":"2016"}],"totalpage":696,"totalrecord":6952}