欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

基于主成分分析的彩色扫描仪光谱特性化

于海琦 , 刘真 , 田全慧

影像科学与光化学 doi:10.7517/j.issn.1674-0475.2015.02.161

为了实现扫描仪在不同光源、不同观察者条件下准确获取颜色信息,最大程度的避免同色异谱现象,本文采用光谱的方法对扫描仪进行特性化处理,通过多项式回归和BP神经网络分别与主成分分析法结合,首先对检测样本的光谱反射率进行主成分分析,提取主成分与主成分系数,通过实验得到主成分系数与多项式回归、BP神经网络结构之间的转换模型,实现了扫描仪低维RGB信号对原始光谱反射率信息的重构,进而实现扫描仪的光谱特性化.实验结果表明,多项式项数为19项时,达到训练样本的均方根误差为1.7%,检测样本的均方根误差为1.9%.而包含15个隐层节点的单隐层BP神经网络结构为比较合理的网络结构,达到训练样本的均方根误差为1.3%,检测样本的均方根误差为1.5%.对彩色扫描仪的特征化处理,采用多项式回归法得到光谱特性化精度较低,采用BP神经网络模型能够实现更高的光谱特性化精度.

关键词: 彩色扫描仪 , 光谱特征化 , 多项式回归 , BP神经网络 , 主成分分析

一种基于GA-BP神经网络结合PCA的LCD显示器光谱特征化模型

于海琦 , 刘真 , 田全慧

液晶与显示 doi:10.3788/YJYXS20163102.0201

为实现LCD显示器的光谱特征化,本文提出一种基于遗传算法优化(Genetic Algorithm,GA)的BP神经网络(GA-BP)结合PCA(Principal component analysis)的光谱特征化模型.首先对显示器色空间进行子空间划分,同时采用PCA对光谱数据进行降维,接着在各子空间中采用遗传算法对BP神经网络的权值阈值进行优化,建立显示器驱动值与光谱数据之间的神经网络模型,实现了显示器的光谱特征化.实验结果表明子空间划分后,在子空间中进行模型参数的优化有利于模型整体精度的提高,GA的优化有效改善了BP神经网络的极值问题,提高了模型的精度,PCA在不影响模型精度的同时提高了算法的运行效率.由此说明该模型是一种高精度显示器特征化模型.

关键词: BP神经网络 , 遗传算法 , 光谱特征化 , 液晶显示器 , 主成分分析

出版年份

刊物分类

相关作者

相关热词