{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"家电用钢板不经处理表面很容易留下明显的指纹印或手掌印,易产生“发黑”的现象,影响其美观和耐腐蚀性能。介绍了耐指纹涂料的产生、发展历程、主要成分与作用以及相关的性能表征手段,指出了存在的主要问题和研究方向。","authors":[{"authorName":"王海人","id":"9b5844cd-4891-4866-8da6-27f14590ab0d","originalAuthorName":"王海人"},{"authorName":"谢娥梅","id":"7ea5facf-df45-415d-96f2-407cabfcd9a5","originalAuthorName":"谢娥梅"},{"authorName":"屈钧娥","id":"5102cdc5-3ff8-4e86-9235-b03e2f8eb703","originalAuthorName":"屈钧娥"},{"authorName":"李文维","id":"8eb1c6af-1c4d-49fb-9b19-80b928dcc601","originalAuthorName":"李文维"},{"authorName":"冯俊勇","id":"b8d09ef2-0b29-45ac-a632-19f660826555","originalAuthorName":"冯俊勇"},{"authorName":"肖珍","id":"dae1e007-457f-4b9c-8970-55ff4a265599","originalAuthorName":"肖珍"}],"doi":"","fpage":"52","id":"7f1551dd-0451-4e2c-be9f-1be3e0a805fc","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"79b5a799-4ea5-4afd-b90f-33cc5ca9a2b7","keyword":"耐指纹涂料","originalKeyword":"耐指纹涂料"},{"id":"32a0435e-9f93-4d52-a80d-1a493bd8a6fe","keyword":"发展历程","originalKeyword":"发展历程"},{"id":"8b6309a3-4f1f-4bca-ab75-8c0b0fb71f7f","keyword":"主要成分","originalKeyword":"主要成分"},{"id":"cae17270-5f97-48c2-b6c0-8f822568adf9","keyword":"性能表征方法","originalKeyword":"性能表征方法"}],"language":"zh","publisherId":"clbh201202019","title":"钢板耐指纹涂料及其涂膜表征方法的研究进展","volume":"45","year":"2012"},{"abstractinfo":"根据所表征镀层的力学性能和实际应用之间的关系,将表征方法分为两类:基本性能与使用性能表征.综述了这两类常用的性能表征方法及其优缺点.初步讨论了一些新方法如镀层冲击试验和超声波冲蚀试验,前者可用来分析膜基体系的结合强度或冲击韧度,后者可提供膜基结合强度的更多信息.还介绍了台架试验与实物试验.","authors":[{"authorName":"余历军","id":"cdc01b8a-f826-44d7-9207-c16898e9ee62","originalAuthorName":"余历军"},{"authorName":"田林海","id":"4ae3006d-1524-4440-8a51-a9ec4778aa7b","originalAuthorName":"田林海"},{"authorName":"朱玲菊","id":"83076534-1e6e-454e-939c-c0da7e7be40f","originalAuthorName":"朱玲菊"},{"authorName":"朱晓东","id":"9fcc9541-9dce-4bf9-a631-776e133f4023","originalAuthorName":"朱晓东"},{"authorName":"张秀成","id":"fcb443d3-f38c-40fa-86fa-8286981ea299","originalAuthorName":"张秀成"}],"doi":"10.3969/j.issn.1000-3738.2005.07.002","fpage":"4","id":"3643a2fc-563a-44b2-8616-9d8df7c02a74","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"6a5397b4-90f0-40a2-bb1a-25fe594dd67a","keyword":"镀层","originalKeyword":"镀层"},{"id":"f440ddbd-22dd-4127-9393-8b192cc840b7","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"36859cd8-2270-4b8b-ad4d-2c576ed25dc8","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"jxgccl200507002","title":"表征硬质镀层力学性能方法","volume":"29","year":"2005"},{"abstractinfo":"基于溶胶-凝胶原理的有机硅橡胶原位增强新方法有效地解决了填料在聚合物基体中的分散和团聚问题,可得到具有更好机械性能和耐热性能的有机硅材料.根据填料性质的不同,详细介绍了各种原位增强方法、增强机理及表征手段,比较了25°C时未增强及不同浓度填料原位增强聚合物材料的应力-应变等温线,并简要描述了原位增强工艺的前景.","authors":[{"authorName":"伍川","id":"2b021324-e8d0-40a0-a098-b6544eea6918","originalAuthorName":"伍川"},{"authorName":"蒋剑雄","id":"d5f3c6b1-c731-460a-b659-8b8351a8ebef","originalAuthorName":"蒋剑雄"},{"authorName":"邱化玉","id":"704dc67b-a761-4fe8-af77-65611c4af96e","originalAuthorName":"邱化玉"},{"authorName":"来国桥","id":"ad6697ef-7540-4419-a2ab-29c89b18a45c","originalAuthorName":"来国桥"}],"doi":"","fpage":"47","id":"d1d46550-9e3a-4a57-bc90-281f8a662840","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2a6c42d7-025a-4c27-93e8-a50d9f055a1a","keyword":"硅橡胶","originalKeyword":"硅橡胶"},{"id":"8b943ae3-22ff-409c-97a9-2e33da91bd5f","keyword":"原位增强","originalKeyword":"原位增强"},{"id":"b3fc4374-1bfd-488b-8631-6a859db7ce1d","keyword":"机理","originalKeyword":"机理"},{"id":"2fd08bb5-5b63-4bd3-ae9f-3e4c66528f68","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"cldb200706012","title":"硅橡胶原位增强方法、机理及性能表征","volume":"21","year":"2007"},{"abstractinfo":"超硬薄膜能够显著提高材料的关键服役性能.系统总结了超硬薄膜的硬化机制、制备技术以及性能表征方法,分析了制备技术和性能表征方法的优缺点,指出了超硬薄膜研究发展的方向.","authors":[{"authorName":"郑凤新","id":"c6ce4703-48d7-4000-993b-31ebab9a4860","originalAuthorName":"郑凤新"}],"doi":"","fpage":"99","id":"fb6a4449-7c0a-49e2-9b7d-04ade187e488","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"df5d9f12-ab98-4358-856a-c8a601179282","keyword":"超硬薄膜","originalKeyword":"超硬薄膜"},{"id":"6c925c1d-7af7-4dac-ad5b-392f6026b935","keyword":"制备技术","originalKeyword":"制备技术"},{"id":"80555c72-7831-4ac5-ae40-058d6f72c4bb","keyword":"性能表征","originalKeyword":"性能表征"}],"language":"zh","publisherId":"bmjs201206029","title":"超硬薄膜制备技术与性能表征方法的研究进展","volume":"41","year":"2012"},{"abstractinfo":"为了满足新能源电池对质子选择性导电膜的需要,提出一种质子传导膜的新型制备工艺,并进行质子传导膜的制备工艺放大.以聚偏氟乙烯(PVDF)和烯丙基磺酸钠(SAS)为原料,成功制备长1000 mm、宽800mm的质子传导膜.膜性能测试结果显示,质子传导膜电导率随SAS质量分数变化显著.当SAS质量分数为20%时,膜电导率3.0×10-2 S/cm;膜化学稳定性良好,使用Fenton试剂氧化法测得膜剩余质量分数97.5%;屈服强度23 N/mm2,膜爆破强度为2 MPa; TGA分析膜分解温度高于400℃.该膜应用于全钒液流电池,自放电实验测得开路电压下降速率为1.41×10-3V/h,库伦效率93%.结果表明,膜材料综合性能良好,有望在全钒液流电池产业化过程中得到大规模应用.","authors":[{"authorName":"刘平","id":"53f2335f-31e8-4a07-b551-cb64445fcfd5","originalAuthorName":"刘平"},{"authorName":"青格乐图","id":"85d8491d-06cd-4cfd-b252-38e0671c45b1","originalAuthorName":"青格乐图"},{"authorName":"郭伟男","id":"09b3049f-ad46-463f-9b52-403a5520debb","originalAuthorName":"郭伟男"},{"authorName":"陈晓","id":"91d8c1d2-a6b1-4275-9d00-115bdf8d19d7","originalAuthorName":"陈晓"},{"authorName":"初晓","id":"a96b9760-4af7-4b26-914b-0d5f61872fd2","originalAuthorName":"初晓"},{"authorName":"王保国","id":"ca15bc15-e2d6-499a-9d73-f44754c2a217","originalAuthorName":"王保国"}],"doi":"10.3969/j.issn.1007-8924.2012.02.005","fpage":"24","id":"7884b329-a445-4442-9d8d-6c9c299f8558","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"36588f60-829a-4f0c-aab2-ca4adcbfd854","keyword":"质子传导膜","originalKeyword":"质子传导膜"},{"id":"32e5a7a1-0f78-407c-96f3-f1d463377c01","keyword":"全钒液流电池","originalKeyword":"全钒液流电池"},{"id":"e9e6e55a-3755-4dd0-b91e-c8918e49ba69","keyword":"电导率","originalKeyword":"电导率"},{"id":"b0ece7fd-0fe9-4187-ac56-0071481d9ac0","keyword":"电池实验","originalKeyword":"电池实验"}],"language":"zh","publisherId":"mkxyjs201202005","title":"质子传导膜制备方法放大与膜性能表征","volume":"32","year":"2012"},{"abstractinfo":"为了弥补传统评价铁矿粉烧结液相流动性能指标不考虑液相流动速度、温度及升温速率或不考虑温度对液相流动速度影响的不足和采用多个指标分开来表征液相流动速度与温度所带来的使用上的不便.利用可视卧式高温炉观测铁矿粉试样的熔化流动过程,结合试验中试样收缩与流动规律定义了烧结液相流动始末点,并提取重要参数指标:流动温度、流动时间、面积增长率和升温速率;给出了定量表征温度对烧结液相流动速度影响的函数关系式v(T);在此基础上建立了以实际烧结生产温度为基准,包含流动过程各种关键信息及其内涵的流动性特征数(LD).对比2种方法得到的结果,发现采用流动性特征数可以进一步区分出不同铁矿粉的流动性差异,提高了表征精度,从而为评价铁矿粉流动性能提供了可靠的参考依据.","authors":[{"authorName":"朱利","id":"55e5e8cb-28bf-4d42-aac0-8756aef1a205","originalAuthorName":"朱利"},{"authorName":"吴铿","id":"ded60bea-942a-4e40-a82b-80f16f0d902a","originalAuthorName":"吴铿"},{"authorName":"申威","id":"6f955cec-e5fc-4e5c-8cf0-6c4b630bc343","originalAuthorName":"申威"},{"authorName":"杜瑞岭","id":"f0e6a8e9-4729-47b6-872b-2d1428590559","originalAuthorName":"杜瑞岭"},{"authorName":"余盈昌","id":"12435be7-e114-4be4-8891-702e13d97925","originalAuthorName":"余盈昌"},{"authorName":"赵勇","id":"bbfcede9-ab02-4735-bb8f-b52085d2b721","originalAuthorName":"赵勇"}],"doi":"10.13228/j.boyuan.issn1001-0963.20150142","fpage":"13","id":"7cb0d35e-2c36-43e5-b68c-84a0ccfe8604","issue":"6","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"6ac52d5c-b0ab-4126-b5e0-09da29ce4dd0","keyword":"烧结液相","originalKeyword":"烧结液相"},{"id":"09663a4d-84be-4037-bf7f-6cc17c8e6896","keyword":"铁矿粉","originalKeyword":"铁矿粉"},{"id":"da386da5-436d-48cb-bd1f-790c17821171","keyword":"流动性特征数","originalKeyword":"流动性特征数"},{"id":"4bdac739-de69-464e-aa2c-28b69525794a","keyword":"温度","originalKeyword":"温度"},{"id":"5a435868-1496-433b-8158-2c6769eeee25","keyword":"流动速度","originalKeyword":"流动速度"}],"language":"zh","publisherId":"gtyjxb201606002","title":"表征铁矿粉烧结液相流动性能的新方法","volume":"28","year":"2016"},{"abstractinfo":"采用喷雾热分解(Spray pyrolysis)方法,以NH4F、SnCl2·2H2O为原料,对反应液配方进行了优化,在普通玻璃衬底上制备出了光电性能优良的掺F二氧化锡透明导电薄膜.采用X射线衍射仪(XRD)、扫描电镜(SEM)、紫外-可见分光光度计(UV/VIS)对薄膜的结构、形貌、光学、电学特征进行了表征和分析.结果表明:在衬底温度为500℃, NH4F/SnCl2·2H2O的质量百分比为20%,喷涂时间为15s时掺F二氧化锡薄膜的方块电阻最低达到6.2Ω/□,可见光透射率为86.95%,且薄膜晶粒均匀,表面形貌平整致密.","authors":[{"authorName":"苗莉","id":"79405801-90b0-4b28-ab49-17cff4c65d4c","originalAuthorName":"苗莉"},{"authorName":"徐瑞松","id":"06534abf-7913-4da5-b721-1a5784212386","originalAuthorName":"徐瑞松"},{"authorName":"马跃良","id":"dfc34a39-30d1-470c-af2f-979cdc879ee8","originalAuthorName":"马跃良"}],"doi":"","fpage":"121","id":"96798d70-0a04-48ba-adce-ae224b1d1847","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ba02ad67-7dc6-4cf0-92ce-b33050b6612d","keyword":"SnO2:F导电薄膜","originalKeyword":"SnO2:F导电薄膜"},{"id":"15430336-a7d5-4767-b310-c278f46b5108","keyword":"喷雾热分解法","originalKeyword":"喷雾热分解法"},{"id":"399b36a3-aca2-4b22-aaea-b5af1be982dc","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb200801031","title":"SnO2:F导电薄膜的制备方法性能表征","volume":"22","year":"2008"},{"abstractinfo":"单层石墨烯的厚度为0.335nm,在垂直方向上有约1 nm的起伏,且不同工艺制备的石墨烯层数和结构有所不同,如何有效地鉴定石墨烯的层数和结构是获得高质量石墨烯的关键步骤之一。介绍了光学显微镜、扫描电子显微镜(SEM )、透射电子显微镜(TEM)、原子力显微镜(AFM)、拉曼光谱(Raman)、红外光谱(IR)、X射线光电子能谱(XPS)和紫外-可见光谱(UV-Vis)等几种用来表征石墨烯的主要方法。","authors":[{"authorName":"彭黎琼","id":"1353c5d3-97cc-46bd-acc2-706309a44e79","originalAuthorName":"彭黎琼"},{"authorName":"谢金花","id":"21467b6a-1fee-4fec-a936-78f32857bd21","originalAuthorName":"谢金花"},{"authorName":"郭超","id":"703e9b8a-d4fc-4ee5-98b1-3ee9b2bf4b49","originalAuthorName":"郭超"},{"authorName":"张东","id":"630d691a-92c3-4109-af87-aa4da4d2ce9c","originalAuthorName":"张东"}],"doi":"10.3969/j.issn.1001-9731.2013.21.001","fpage":"3055","id":"4d1576f5-a17f-4cec-9090-338b82429e53","issue":"21","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5b1a2d9e-d9ac-4223-b344-977e5e2db691","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"52254a8b-d7e9-4fe3-8771-41086cc00cf1","keyword":"表征","originalKeyword":"表征"},{"id":"454e3434-7343-479c-b97f-0343e2581b73","keyword":"层数","originalKeyword":"层数"},{"id":"418848c0-805b-43c2-9268-29e3c8829f89","keyword":"结构","originalKeyword":"结构"},{"id":"75a3e4a9-6c0a-4dc2-9922-1c2c8d95088e","keyword":"显微镜","originalKeyword":"显微镜"},{"id":"4caf1d96-99dc-48dd-baac-84d8dcffe8b7","keyword":"光谱","originalKeyword":"光谱"}],"language":"zh","publisherId":"gncl201321001","title":"石墨烯的表征方法","volume":"","year":"2013"},{"abstractinfo":"本文用原生粒径20 nm、团聚现象严重的纳米SiO2作为分散相,PEG200作为分散介质,分别用超声波法和行星式球磨法来配制用于个体防护装甲的剪切增稠液体.通过激光粒度分析仪和哈克流变仪测定不同配制方法下纳米SiO2/PEG200分散体系的分散性和流变性能,结果表明:由于行星式球磨的连续细化作用和分散剂A1120的助磨、保护颗粒新表面的作用,用行星式球磨法加入分散剂A1120配制的剪切增稠液体,纳米SiO2在体系中的平均粒径最小,分散性好;分别用行星式球磨法和超声波法加入分散剂A1120配制的剪切增稠液体均具有先剪切变稀后剪切增稠的流变性能,但在整个剪切应力范围内,行星式球磨法配制的剪切增稠液体的粘度比超声波法大.","authors":[{"authorName":"徐素鹏","id":"381b54eb-0842-43ff-8c2f-51bc35901ea3","originalAuthorName":"徐素鹏"},{"authorName":"张玉芳","id":"da77dff0-7b26-4298-aab5-985356215b33","originalAuthorName":"张玉芳"}],"doi":"","fpage":"966","id":"12a830c6-f118-4811-89f7-858028c5f2c8","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"2feca835-add8-4189-8faf-eee4bb6d779b","keyword":"剪切增稠液体","originalKeyword":"剪切增稠液体"},{"id":"18fa8fec-1277-4070-abc8-22bfc015d04c","keyword":"超声波法","originalKeyword":"超声波法"},{"id":"bead3829-030a-43ff-bdd8-edfbd9e7ae36","keyword":"行星式球磨法","originalKeyword":"行星式球磨法"},{"id":"b0fe126e-3714-406c-b4c8-0ad963b71316","keyword":"分散性","originalKeyword":"分散性"},{"id":"e4fae966-7337-4a3c-877c-ba892ca30b9c","keyword":"流变性能","originalKeyword":"流变性能"}],"language":"zh","publisherId":"gsytb201104044","title":"不同配制方法下剪切增稠液体的性能表征","volume":"30","year":"2011"},{"abstractinfo":"采用一种新方法制备了以聚四氢呋喃醚(PYMG)为芯材的聚氨酯纳/微胶囊相变材料(PU-N/MEPCM),通过红外(IR),动态光散射(DLS),透射电镜(TEM),差示扫描量热法(DSC)和热重分析(TGA)等测试手段对PU-N/MEPCM的化学结构,粒径,形态,热性能,稳定性和外壳强度进行研究.结果表明,两亲性嵌段聚氨酯可以包裹在芯材外层形成纳/微胶囊,其粒子具有核壳型,复合型和聚氨酯粒子型三种结构;改变PU的羧基含量可以使芯材含量达到65%;粒径可以从198nm变化到420 nm;相变焓可以达到纯芯材的65%;PU-N/MEPCM的热稳定性随着羧基含量的增加而变好.","authors":[{"authorName":"魏燕彦","id":"da8a8779-53ab-4d46-b985-2abca1598080","originalAuthorName":"魏燕彦"},{"authorName":"王福芳","id":"3b3dbe14-38f9-4c0c-9445-93478271922c","originalAuthorName":"王福芳"},{"authorName":"宗成中","id":"65273c1e-e566-4a61-9f42-4dea0e6bbbaa","originalAuthorName":"宗成中"}],"doi":"","fpage":"125","id":"65ca03c3-0f25-41de-9f88-3f151ba65543","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b3115697-c268-4c1f-b560-8406028fe254","keyword":"纳微胶囊相变材料","originalKeyword":"纳微胶囊相变材料"},{"id":"e3aa68c5-fde1-4ed9-8097-1570d353bc75","keyword":"嵌段聚氨酯","originalKeyword":"嵌段聚氨酯"},{"id":"abe4aa5a-9b17-4756-bf19-451484b9dd90","keyword":"自乳化","originalKeyword":"自乳化"},{"id":"6213e818-6d65-4ccf-b1d7-40737355c894","keyword":"聚四氢呋喃醚","originalKeyword":"聚四氢呋喃醚"}],"language":"zh","publisherId":"gfzclkxygc201012034","title":"聚氨酯纳/微胶囊相变材料的制备方法性能表征","volume":"26","year":"2010"}],"totalpage":12938,"totalrecord":129375}