{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"建立了沿Si(100)方向外延生长亚单层Si薄膜的动力学蒙特卡罗模拟模型,对二维Si薄膜的生长过程及二维Si岛的形貌演变进行了研究.结果表明,在一定的入射率下存在一最佳成岛温度,该温度随入射率的增大而升高.以最佳成岛温度生长时,岛密度随覆盖度的增加呈现增加-饱和-减小的变化规律.在低温和高入射率下,岛密度随覆盖度单调增加,薄膜呈离散生长.而温度很高和入射率很低时,岛密度始终以很小的数值在小范围内振荡,薄膜呈紧致生长.","authors":[{"authorName":"王全彪","id":"8fae64ca-9ade-44d5-9e44-5015a98c0b17","originalAuthorName":"王全彪"},{"authorName":"杨瑞东","id":"81ed77a8-5d96-49a0-b598-dada154213a4","originalAuthorName":"杨瑞东"},{"authorName":"杨宇","id":"404d252b-27ef-478b-9d45-3a77da9d87f8","originalAuthorName":"杨宇"}],"doi":"","fpage":"128","id":"7b7384dd-39de-48c9-882c-c0407947e2f0","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0db4ccd6-aab9-4327-937a-3e2fd8338bf7","keyword":"Si薄膜生长","originalKeyword":"Si薄膜生长"},{"id":"86dd94e8-950b-4734-9d34-7ee95f2fff1c","keyword":"动力学蒙特卡罗","originalKeyword":"动力学蒙特卡罗"},{"id":"91ee46fa-b89a-4cd2-9190-66f42d2fef04","keyword":"岛密度","originalKeyword":"岛密度"}],"language":"zh","publisherId":"cldb200702033","title":"外延生长亚单层Si薄膜的动力学蒙特卡罗模拟","volume":"21","year":"2007"},{"abstractinfo":"为深入理解生长因素及应变对量子点形成的影响,科研工作者采用动力学蒙特卡罗方法对量子点的生长进行了大量研究。简要概括了采用动力学蒙特卡罗法(kinetic monte carlo,KMC)模拟量子点生长的研究进展。主要从模型结构和原子间相互作用势的差异来介绍量子点二维层状生长向三维岛状生长过渡、成核位置、量子点尺寸分布以及量子点形貌转变等内容。此外还简单介绍了图形衬底上有序量子点生长的模拟研究进展,为量子点生长及应用奠定了坚实的基础。","authors":[{"authorName":"周艳华","id":"fb6bd406-c7e8-447a-8e47-876e961fc488","originalAuthorName":"周艳华"},{"authorName":"杨杰","id":"7099c2f0-3a19-420b-a33a-ab0e597aa6b9","originalAuthorName":"杨杰"},{"authorName":"王茺","id":"7ae6fb45-4605-4eb2-b06d-0a7a327cffa4","originalAuthorName":"王茺"},{"authorName":"杨宇","id":"6053ebdd-db1c-4761-8bde-a434dbcd29ba","originalAuthorName":"杨宇"}],"doi":"10.3969/j.issn.1001-9731.2015.22.001","fpage":"22001","id":"8833df05-2190-4ce4-8c6b-133899539a79","issue":"22","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"afe28c8e-4d53-411c-b2c7-7e96ffee59aa","keyword":"动力学蒙特卡罗","originalKeyword":"动力学蒙特卡罗"},{"id":"d61330cd-7db2-4804-8306-08423c337d4b","keyword":"量子点","originalKeyword":"量子点"},{"id":"6f86e03d-e8b7-4e9e-9d99-f3fcc24cad24","keyword":"相互作用势","originalKeyword":"相互作用势"},{"id":"235767d6-10e5-4e0d-9364-ce7d8cd08a26","keyword":"自组织生长","originalKeyword":"自组织生长"},{"id":"a974e582-691a-4317-8efe-a7001aed6dd9","keyword":"图案衬底","originalKeyword":"图案衬底"}],"language":"zh","publisherId":"gncl201522001","title":"动力学 Monte Carlo 方法对量子点生长微观机理模拟的研究进展?","volume":"","year":"2015"},{"abstractinfo":"结合第一性原理计算和动力学蒙特卡罗模拟研究了稀磁半导体(Ga,Mn) As中Mn杂质的沉积动力学规律.利用第一性原理计算和爬坡弹性带方法计算了Mn杂质的跃迁势垒和结合能,并把这些能量作为动力学蒙特卡罗模拟(Ga,Mn) As微观结构演化的输入数据.结果表明在外延生长退火下长时间的微观结构演化的背后机制是Ga空位调节Mn原子在Ga子晶格上进行扩散.这种扩散会导致Mn原子的聚集,进而降低了居里温度.此外,随着退火温度的升高Mn团簇聚集的速率也更快.在高温退火下容易导致相分离.","authors":[{"authorName":"张玉光","id":"6c16705c-3b65-4487-a7e3-00aa47517626","originalAuthorName":"张玉光"},{"authorName":"唐政","id":"164498ee-dd2a-4800-95cb-c4c7d1c50f89","originalAuthorName":"唐政"}],"doi":"10.11896/j.issn.1005-023X.2015.20.030","fpage":"144","id":"d56ebd56-c55a-45e2-8996-865af8b4e56e","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4d9fd161-88be-477a-95ab-7505845e63f3","keyword":"稀磁半导体","originalKeyword":"稀磁半导体"},{"id":"f4baf368-324a-42bd-ab51-188069499f6c","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"3154b253-0cca-49a2-9c32-e22588d87778","keyword":"动力学蒙特卡罗","originalKeyword":"动力学蒙特卡罗"}],"language":"zh","publisherId":"cldb201520030","title":"(Ga,Mn)As稀磁半导体的杂质动力学模拟研究","volume":"29","year":"2015"},{"abstractinfo":"本文以扩散理论为基础,利用KMC模拟方法,考察了温度对薄膜生长速率和表面形貌的影响以及生长表面的粗糙化相变过程.模拟表明,温度升高有利于提高薄膜生长速率,薄膜生长以“成核-岛数增长-岛的长大融合”的方式进行.模拟发现薄膜生长初期存在粗糙化相变过程,当温度低于相变温度时,薄膜分层生长,生长速率较慢;当温度高于相变温度时,薄膜表面粗糙度骤然升高,生长速率加快.","authors":[{"authorName":"周雪飞","id":"fdc22be6-e09a-4993-b225-e3b4619951a2","originalAuthorName":"周雪飞"},{"authorName":"吴冲","id":"50a82ef1-356d-4a4b-afef-dc15dcdff7e8","originalAuthorName":"吴冲"},{"authorName":"唐朝云","id":"1c43a529-e59b-45f4-833c-5a09f8176dd3","originalAuthorName":"唐朝云"},{"authorName":"孔垂岗","id":"414dc775-a319-464d-b604-bd3bd8987e9c","originalAuthorName":"孔垂岗"},{"authorName":"邱贝贝","id":"5bb3a5e9-9acb-42d6-be6c-50e43b635b71","originalAuthorName":"邱贝贝"},{"authorName":"杨云","id":"c252fc2f-a17a-413b-b197-809dbb161499","originalAuthorName":"杨云"},{"authorName":"卢贵武","id":"899b3e6b-a735-4e74-9e52-2ba89b5c07b1","originalAuthorName":"卢贵武"}],"doi":"","fpage":"792","id":"892010e2-0c1a-4ad7-946d-2709d0658a5c","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"a0ddf0e4-3d14-442b-b878-bb42d1a8a3d5","keyword":"动力学蒙特卡罗","originalKeyword":"动力学蒙特卡罗"},{"id":"3644e0f0-7036-418e-b931-af99efb1fecb","keyword":"计算机模拟","originalKeyword":"计算机模拟"},{"id":"bc3b668f-1193-4985-a436-235f4feb4e55","keyword":"微观生长机制","originalKeyword":"微观生长机制"},{"id":"3bfa479b-f0e9-435f-b902-a2ffedd178de","keyword":"相变温度","originalKeyword":"相变温度"}],"language":"zh","publisherId":"rgjtxb98201203049","title":"动力学蒙特卡洛(KMC)模拟薄膜生长","volume":"41","year":"2012"},{"abstractinfo":"采用动力学蒙特卡罗方法,对在完整光滑界面上低过饱和度溶液中的晶体生长机制和动态过程进行计算机模拟,得到了晶体生长速率与溶液过饱和度之间的关系以及晶体生长的表面形态.对以二维成核为主要生长机制的动力学生长规律进行分析,发现了二维成核生长的生长死区以及单核生长转变为多核生长时的过饱和度临界值,讨论了热粗糙度、表面扩散、台阶平均高度以及表面尺寸对晶体平均生长速率的影响.","authors":[{"authorName":"朱阁","id":"b8ed756a-fed4-43b0-9690-0b84c930c6a6","originalAuthorName":"朱阁"},{"authorName":"卢贵武","id":"23611a9e-48eb-4eda-8bfc-a6c31d239cb0","originalAuthorName":"卢贵武"},{"authorName":"李英峰","id":"29c18147-454b-4b79-b2fa-54aa7d2e6241","originalAuthorName":"李英峰"},{"authorName":"蓝建慧","id":"a561afec-94da-4a8d-8a2b-0d44f3be045a","originalAuthorName":"蓝建慧"},{"authorName":"张军","id":"098ba25b-6a04-4616-9479-c15b682ed40c","originalAuthorName":"张军"},{"authorName":"郑庆彬","id":"685385f4-879d-4e9d-b0cc-6dca77cbe02e","originalAuthorName":"郑庆彬"},{"authorName":"黄乔松","id":"9cebf265-2a0f-43bc-8611-eb6f6d8fd0fe","originalAuthorName":"黄乔松"},{"authorName":"孙洵","id":"3b3ef0b3-29e4-43a3-b8ff-015ac8315e8b","originalAuthorName":"孙洵"},{"authorName":"夏海瑞","id":"940fd46b-9886-430c-a092-99b8da2c690e","originalAuthorName":"夏海瑞"}],"doi":"10.3969/j.issn.1000-985X.2006.01.006","fpage":"24","id":"20e52351-6538-495d-a058-602b3775ea8c","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"2dba3271-16b3-4afc-a096-544dc0c15c4e","keyword":"蒙特卡罗模拟","originalKeyword":"蒙特卡罗模拟"},{"id":"5a7a5676-e4c5-446e-8430-222e4ad2c786","keyword":"生长机制","originalKeyword":"生长机制"},{"id":"bc77200d-8f3a-41fd-876a-249516927333","keyword":"晶体表面形态","originalKeyword":"晶体表面形态"},{"id":"c98f22c0-4577-4342-9f05-3606c202458f","keyword":"晶体生长动力学","originalKeyword":"晶体生长动力学"}],"language":"zh","publisherId":"rgjtxb98200601006","title":"晶体生长机制和生长动力学蒙特卡罗模拟研究","volume":"35","year":"2006"},{"abstractinfo":"采用动力学蒙特卡罗模型模拟了GaAs应变弛豫图形衬底上InAs量子点阵列生长早期阶段,温度对浸润层之上第一层亚单原子层阶段的影响.通过对生长表面形态、岛平均大小、岛大小分布及其标准差等方面的研究,证明了通过控制温度能够得到大小均匀、排列有序的岛阵列,这对后续量子点生长的定位和尺寸控制有重要影响.","authors":[{"authorName":"宋禹忻","id":"6a6847af-e7c7-4fe3-b756-671edcabfd7e","originalAuthorName":"宋禹忻"},{"authorName":"俞重远","id":"775e7a15-5e19-45e5-be99-6a489fc7d3f9","originalAuthorName":"俞重远"},{"authorName":"刘玉敏","id":"76a60ba6-acaa-4a8a-bac1-a4ba441404c8","originalAuthorName":"刘玉敏"}],"doi":"","fpage":"2080","id":"4e1f4aac-25bd-4ac4-927d-811654f241ce","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c20b575c-63f5-4efe-b165-27f7ed5d7e8a","keyword":"动力学蒙特卡罗模拟","originalKeyword":"动力学蒙特卡罗模拟"},{"id":"2cafedb2-2e4c-4ba7-a86b-fcd28350b079","keyword":"量子点","originalKeyword":"量子点"},{"id":"0dd3fbd8-21c6-4f40-bfe7-62c47b8023ae","keyword":"外延生长","originalKeyword":"外延生长"}],"language":"zh","publisherId":"gncl200712045","title":"温度对InAs/GaAs量子点生长影响的动力学蒙特卡罗模拟","volume":"38","year":"2007"},{"abstractinfo":"应用一套新的动力学蒙特卡洛方法模拟化学气相沉积生长Cu薄膜,铜原子随机生长在平方(100)同质晶格上.生长包括几个基本的过程:沉积,表面扩散,原子吸附,原子对成核,岛状生长等.薄膜的生长质量被诸如表面熵的一些参数所描述,表面熵是类比信息熵在通信领域的应用所提出的一个新的概念.发现低温和较低的覆盖层数往往伴随着粗糙的膜的表面,直到达到临界温度后不再变化,这些结论和实验的结果相一致.改变了传统的对薄膜粗糙度的定义,同时发现仅仅用粗糙度这个参数描述薄膜表面粗糙情况是不恰当的.最后对比结果解释了提出表面熵这个新概念的合理性.","authors":[{"authorName":"李朋","id":"9b8014cd-2687-464a-bbec-f56e11f862ab","originalAuthorName":"李朋"},{"authorName":"杨振雄","id":"7067f269-455f-41d7-bd06-1ff76a9ab533","originalAuthorName":"杨振雄"},{"authorName":"赵虎","id":"3dc95e1b-3552-4a82-baf8-4f476c4617df","originalAuthorName":"赵虎"}],"doi":"10.3969/j.issn.1007-5461.2015.03.017","fpage":"364","id":"4786f8c1-a2a0-440d-a73c-866a07b418b5","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"5d01b197-a5fe-43a6-9ea8-07a1620dafe5","keyword":"薄膜光学","originalKeyword":"薄膜光学"},{"id":"2f829761-e6e3-4fd5-838f-cfaf3a595d0a","keyword":"动力学蒙特卡洛方法","originalKeyword":"动力学蒙特卡洛方法"},{"id":"714843c9-f526-4c11-9386-d7c0b1b2dea3","keyword":"生长模拟","originalKeyword":"生长模拟"},{"id":"122d4337-11c1-4985-a6cc-1770b8a2eb1b","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"},{"id":"b2aa7693-d3b4-4789-9a22-a55990b96e70","keyword":"表面熵","originalKeyword":"表面熵"}],"language":"zh","publisherId":"lzdzxb201503017","title":"基于动力学蒙特卡洛方法模拟化学气相沉积生长Cu薄膜的条件","volume":"32","year":"2015"},{"abstractinfo":"构造三维蒙特卡罗模型,研究了六边形基底薄膜生长的过程.在模型中针对每个原子考虑了原子沉积,原子扩散及原子脱附三个动力学过程,并认为这三个过程是相互独立的,即在同一计算步长中三个过程依据各自的概率发生.经过生长过程可视化的结果表明,薄膜原子之间的相互作用能、基底温度和沉积速率对薄膜的生长方式有显著的影响.这一结论得到了实验的验证.","authors":[{"authorName":"朱祎国","id":"bbc7ecb4-0587-4505-b979-bc865984bbbc","originalAuthorName":"朱祎国"}],"doi":"","fpage":"640","id":"d8a8d588-6e44-4ef7-8ff2-9dc2b62dbe92","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"eb7fae3a-4ac6-444c-9ebe-f319e58116e2","keyword":"材料科学基础学科","originalKeyword":"材料科学基础学科"},{"id":"6bf518f2-5695-46c7-94be-ac908f2b1c7e","keyword":"薄膜生长","originalKeyword":"薄膜生长"},{"id":"4cf7e9df-26f7-40c1-828e-4bb15824079d","keyword":"三维Monte Carlo模型","originalKeyword":"三维Monte Carlo模型"},{"id":"40497ef0-7e47-4ea6-a5a0-e94f2cdc1777","keyword":"生长方式","originalKeyword":"生长方式"},{"id":"d0981d80-026d-41a6-b0b8-484ed6c923e2","keyword":"形貌","originalKeyword":"形貌"}],"language":"zh","publisherId":"clyjxb200906014","title":"薄膜生长的三维蒙特卡罗模型","volume":"23","year":"2009"},{"abstractinfo":"建立了Si(100)-(2×1)表面上Si薄膜生长的Kinetic Monte Carlo(KMC)模型,并对薄膜生长的初始阶段进行了研究.结果表明:在一定的入射率下存在一最佳成岛温度,该温度随入射率的增大而升高,并满足函数关系T=T0+bln(F+c).","authors":[{"authorName":"王全彪","id":"e422ad2f-4fc6-4c47-a060-e33cf520bb69","originalAuthorName":"王全彪"},{"authorName":"杨瑞东","id":"009f7f15-7b13-4079-81e7-4d9a61648209","originalAuthorName":"杨瑞东"},{"authorName":"王茺","id":"16822f08-8030-42de-9998-81818f81ef89","originalAuthorName":"王茺"},{"authorName":"杨宇","id":"dedb388b-0430-4389-afd0-37d8bdac5daa","originalAuthorName":"杨宇"}],"doi":"","fpage":"37","id":"8f67012c-0ca0-42d5-8263-bbff5551bdc1","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"dd2381b9-649e-4c05-a845-583f0d86f462","keyword":"Si薄膜生长","originalKeyword":"Si薄膜生长"},{"id":"c3731367-da39-4a1d-802f-e89c9a4cf97d","keyword":"动力学蒙特卡罗","originalKeyword":"动力学蒙特卡罗"},{"id":"d1a9d5e7-5bd2-4a04-b9a2-b7a57ab5419d","keyword":"岛密度","originalKeyword":"岛密度"},{"id":"66d6ec79-98ef-4954-bab6-54be2b24bf67","keyword":"成岛温度","originalKeyword":"成岛温度"}],"language":"zh","publisherId":"cldb2007z2014","title":"重构表面上Si薄膜生长的模拟研究","volume":"21","year":"2007"},{"abstractinfo":"本文在分析表面扩散各向异性、二聚体和二聚体列影响的基础上,建立了Si(100)-(2×1) 表面上Si薄膜生长的Kinetic Monte Carlo(KMC)模型,利用该模型对薄膜生长的初始阶段进行了研究.结果表明:吸附原子的扩散距离随温度的变化满足指数函数L=L0AeT/C.在一定的入射率下存在一最佳成岛温度,该温度随入射率的增大而升高.随入射率的减小,薄膜逐渐从离散生长向紧致生长转变,表面扩散的各向异性越显著.","authors":[{"authorName":"王全彪","id":"1173308f-77c2-4eef-80f7-ef805cb29096","originalAuthorName":"王全彪"},{"authorName":"杨瑞东","id":"cdf2fcf7-88e3-4c88-a1f3-f8f314625b6b","originalAuthorName":"杨瑞东"},{"authorName":"杨宇","id":"879657fc-9856-4b93-bf6c-e234db686ce5","originalAuthorName":"杨宇"}],"doi":"10.3969/j.issn.1007-4252.2007.04.016","fpage":"384","id":"a43f0aa0-9f92-4aab-9391-829e49a12adc","issue":"4","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"c6f88e28-b183-4122-b438-6bd9480adc90","keyword":"Si薄膜","originalKeyword":"Si薄膜"},{"id":"b4aab56e-a316-401f-9e3c-1a5cc50defb7","keyword":"动力学蒙特卡罗","originalKeyword":"动力学蒙特卡罗"},{"id":"82371dca-17fa-499e-a983-cedcf4e76d67","keyword":"扩散距离","originalKeyword":"扩散距离"},{"id":"acc40b50-34b1-43e9-a98a-01ba8f91ecfa","keyword":"成岛温度","originalKeyword":"成岛温度"}],"language":"zh","publisherId":"gnclyqjxb200704016","title":"Si(100)-(2×1)表面上Si薄膜生长的模拟","volume":"13","year":"2007"}],"totalpage":3025,"totalrecord":30244}