ZHAO Xin
,
YANG Xiaoling
,
JING Tianfu
钢铁研究学报(英文版)
The hot deformation characteristics of ductile iron are studied in the temperature range of 973 to 1273K and strain rate range of 0001 to 1 s-1 by using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate. The results reveal that the flow stress of ductile iron is sensitive to strain rate. In the processing map under strain of 07, a domain is centered at 1273 K and 1 s-1, and the maximum efficiency is more than 36%. According to the maps, the zone with the temperature range of 1173 to 1273 K and strain rate range of 01 to 1 s-1 may be considered as the optimum region for hot working.
关键词:
ductile iron; processing map; hot working
ZHAO Xin
,
YANG Xiao-ling
,
JING Tian-fu
钢铁研究学报(英文版)
In order to investigate the effect of initial microstructure on warm deformation behavior, some specimens of 45 steel were annealed and some quenched. Then the specimens were isothermally compressed on a Gleeble 3500 machine. The deformation temperature range was 550 to 700 ℃ and the strain rate range was 0.001 to 0.1 s-1. An optical microscope (OM) and a transmission electron microscope (TEM) were used to study the microstructures. The results show that the microstructure of annealed specimens is ferrite and pearlite and that of quenched specimens is martensite. The flow stress of quenched specimens is higher than that of annealed ones at 550 ℃ when strain rates are greater than 0.001 s-1. However, at 600 to 700 ℃ and strain rate of 0.001 s-1, the whole flow curves of quenched specimens are below that of annealed ones. Under the rest conditions, the flow stress of quenched specimens is higher at the beginning of compression and then the opposite is true after the strain is greater than a critical value. The microstructure examination proves that the tempering and dynamic recrystallization easily occur in the specimens with martensite during warm compression, which results in the above phenomena.
关键词:
warm deformation
,
flow stress
,
steel
,
microstructure