{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对采用近液相线连续铸造技术制备的AlSiTMgBe合金坯料进行固态挤压成形,通过组织与性能的分析,研究了AlSi7MgBe合金的固态挤压成形性.结果表明:用近液相线连续铸造技术制备的AlSiTMgBe合金坯料具有均匀,细小的蔷薇状组织,在575℃对其二次加热可获得稳定的、适合于固态触变成形的球化组织,进行固态挤压成形可获得表面光洁,组织细小,分布均匀的成形件,在540℃固溶5 h然后175℃时效10 h处理,其抗拉强度为325 MPa,伸长率为14.6%,表明具有良好的固态挤压成形性.","authors":[{"authorName":"赵大志","id":"6ad61e6a-2229-4237-80a0-1d62d64328ba","originalAuthorName":"赵大志"},{"authorName":"路贵民","id":"c57583cb-2e92-4959-b8c0-70d5bf0ea9c3","originalAuthorName":"路贵民"},{"authorName":"崔建忠","id":"0bd70ab3-6305-4aec-811d-2742258636a6","originalAuthorName":"崔建忠"}],"doi":"10.3321/j.issn:1005-3093.2009.02.004","fpage":"127","id":"77a75774-5db7-4de6-8bc5-b4ccf4aa9ba8","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"dfb359d0-f292-4fd2-b581-9ab711f4d17d","keyword":"材料合成与加工工艺","originalKeyword":"材料合成与加工工艺"},{"id":"41b6501b-e554-43e5-92ef-1adc6ce6426d","keyword":"AlSi7MgBe合金","originalKeyword":"AlSi7MgBe合金"},{"id":"3209c95f-0fa9-446a-8a47-5bb6e5bd30d4","keyword":"固态挤压","originalKeyword":"半固态挤压"},{"id":"3963ecb5-da45-45c7-aef5-b78e937995b4","keyword":"组织与性能","originalKeyword":"组织与性能"}],"language":"zh","publisherId":"clyjxb200902004","title":"AlSi7MgBe合金的固态挤压成形","volume":"23","year":"2009"},{"abstractinfo":"对应变诱发法制备的AZ91D镁合金固态浆料在575℃保温15~60 min后进行挤压成形试验,通过分析不同保温时间下半固态浆料的挤压流变性能及组织特征,研究了保温时间对镁合金固态挤压成形的影响.结果表明:随着保温时间的延长,固态浆料的临界挤压力、最大挤压力和固相率都呈先降后升的趋势,在保温45 min时挤压力达到最小值,固态浆料的充型距离最大,固相颗粒的球形率最佳且分布最均匀,固相率和成形件表面粗糙度最小.","authors":[{"authorName":"郑小平","id":"a479d0ab-847f-4695-9582-c3d0df367b05","originalAuthorName":"郑小平"},{"authorName":"陈继亮","id":"356a517b-e288-41ff-824d-71cdd038e110","originalAuthorName":"陈继亮"},{"authorName":"吉泽升","id":"046401a0-217b-45de-9627-f7646d916c65","originalAuthorName":"吉泽升"},{"authorName":"宁江利","id":"f997df61-9454-4cab-a7be-512cc2a1824b","originalAuthorName":"宁江利"}],"doi":"","fpage":"62","id":"ead300e3-abc6-4937-8593-08629f6ddda1","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"e041f3cd-f473-4171-9452-28ec8ac20801","keyword":"固态挤压","originalKeyword":"半固态挤压"},{"id":"f4377295-5f53-4d51-b6f7-b8f9d11862f2","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"c7203702-2070-4c52-89b1-9ffb069c40ca","keyword":"流变能力","originalKeyword":"流变能力"},{"id":"2e3aa11a-6a99-445f-ab05-6ae04458838a","keyword":"保温时间","originalKeyword":"保温时间"},{"id":"7ed94c41-f1d3-42d3-a484-bd43c60f1e02","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"jxgccl201405013","title":"保温时间对AZ91D镁合金固态挤压成形的影响","volume":"38","year":"2014"},{"abstractinfo":"对ZCuSn10铜合金坯料进行液态浇注和固态挤压成形,通过组织演变的分析,研究不同工艺对ZCuSn10铜合金固态挤压液固协同流动性的影响.结果表明,不同工艺对ZCuSn10铜合金挤压组织液固协同流动性影响不同,在930℃保温40 min挤压速率为12 mm/s可获得固液协同流动较好的挤压成形件组织.相同挤压工艺条件,固态挤压成形件各个位置组织差异较大.近冲头位置保持初始固态组织;试样中部位置为固液两相共存的固态组织、固相颗粒圆整度较高;试样最前端的微观组织中以液相为主,固液两相分布均匀性较差.","authors":[{"authorName":"肖寒","id":"f73d55d0-1eef-477f-9284-f2ac6b732c3e","originalAuthorName":"肖寒"},{"authorName":"陈泽邦","id":"aa9c5ecc-22ce-4c58-a6e5-dfa7318172f8","originalAuthorName":"陈泽邦"},{"authorName":"陆常翁","id":"07e3d68c-e2ef-42c3-9104-899cd35b76ab","originalAuthorName":"陆常翁"},{"authorName":"卢德宏","id":"0af2f8e1-420a-4321-b312-a6f7e4ebb859","originalAuthorName":"卢德宏"},{"authorName":"蒋业华","id":"19b219ec-9492-4653-b272-b8f7d5cea940","originalAuthorName":"蒋业华"},{"authorName":"周荣","id":"55c6fd6d-b3c7-4c31-a208-6fc07828dcdf","originalAuthorName":"周荣"}],"doi":"","fpage":"37","id":"67ee5b0e-b7fd-47ca-842a-91a4bcfc6fbf","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"da4c387d-999c-40ee-ba9b-1046060aff4c","keyword":"ZCuSn10铜合金","originalKeyword":"ZCuSn10铜合金"},{"id":"688b1c95-d8fd-46f1-8c55-e2fbceab4a2c","keyword":"固态挤压","originalKeyword":"半固态挤压"},{"id":"65a2a0d2-c372-4fb9-a993-0bc6dbcf959e","keyword":"液固协同流动","originalKeyword":"液固协同流动"},{"id":"2a348c44-8841-47ea-bd26-8e6c6e0ed25d","keyword":"组织演变","originalKeyword":"组织演变"}],"language":"zh","publisherId":"jsrclxb201512007","title":"固态挤压铸造ZCuSn10铜合金的组织演变","volume":"36","year":"2015"},{"abstractinfo":"对采用近液相线连续铸造技术制备的AlSi7MgBe合金坯料进行固态挤压成形, 通过组织与性能的分析, 研究了AlSi7MgBe合金的固态挤压成形性. 结果表明: 用近液相线连续铸造技术制备的AlSi7MgBe合金坯料具有均匀、细小的蔷薇状组织, 在575℃对其二次加热可获得稳定的、适合于固态触变成形的球化组织, 进行固态挤压成形可获得表面光洁, 组织细小、分布均匀的成形件, 在540℃固溶5 h然后175℃时效10 h处理, 其抗拉强度为325 MPa, 伸长率为14.6%, 表明具有良好的固态挤压成形性.","authors":[{"authorName":"赵大志路贵民崔建忠","id":"ed42143e-8d9a-4a7c-8986-a557383ef73d","originalAuthorName":"赵大志路贵民崔建忠"}],"categoryName":"|","doi":"","fpage":"127","id":"060e6c4d-1846-4632-b9d5-b26d0b29a5a2","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"0c1fd612-ef45-4574-ab9f-5e3e5dcc94fd","keyword":"材料合成与加工工艺","originalKeyword":"材料合成与加工工艺"},{"id":"dcf8bff4-2fe4-42a2-9f6c-4e949ed35061","keyword":"AlSi7MgBe alloy","originalKeyword":"AlSi7MgBe alloy"},{"id":"038c4504-6ab8-4265-ac17-b961058682aa","keyword":"semi–solid thixoextrusion","originalKeyword":"semi–solid thixoextrusion"},{"id":"1fd2ad55-bc75-4f98-8707-0ea5f22d5be4","keyword":"microstructure and properties","originalKeyword":"microstructure and properties"}],"language":"zh","publisherId":"1005-3093_2009_2_8","title":"AlSi7MgBe合金的固态挤压成形","volume":"23","year":"2009"},{"abstractinfo":"采用DEFORM3D软件对叶轮的固态挤压锻造过程进行了数值模拟,获得了叶轮成形的主要参数变化规律.结果表明:固态挤压锻造法可以完成叶轮的成形;叶轮的成形可分为三个阶段,叶片主要是依靠材料的挤压完成成形的,在叶片成形的中期,坯料内部尤其是叶片根部存在着变形不均匀现象,而在叶片成形后期,挤压力急剧增大,最终挤压力为2 780 kN.","authors":[{"authorName":"王卫卫","id":"d3594b97-074a-4e7d-b943-370c7c3b5658","originalAuthorName":"王卫卫"},{"authorName":"姜晓辉","id":"3ef6e985-3080-4f57-bd91-b5a6f01fa5d7","originalAuthorName":"姜晓辉"},{"authorName":"韩飞","id":"88d658a9-6183-42fa-837a-7f00a0604e31","originalAuthorName":"韩飞"}],"doi":"10.3969/j.issn.1000-3738.2007.03.015","fpage":"51","id":"6e497e17-02d5-425c-87d2-a77e174cd1fc","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"26a26b4b-b1b9-42e4-9802-99725eee2f70","keyword":"叶轮","originalKeyword":"叶轮"},{"id":"e6eefcbe-2819-4d9f-b97c-73e3dd2d86a5","keyword":"固态","originalKeyword":"半固态"},{"id":"e15f329e-c044-4998-8c6c-ba2f83a9bfd6","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"107e0c18-f7ac-4bf8-9757-d1d69bd13e9d","keyword":"7075铝合金","originalKeyword":"7075铝合金"}],"language":"zh","publisherId":"jxgccl200703015","title":"叶轮固态挤压锻造过程数值模拟","volume":"31","year":"2007"},{"abstractinfo":"通过挤压具有等轴状初晶组织的固态高铬铸铁,样品的液相在应力作用下被挤向表面,凝固后形成了共晶组织沿径向由内向外呈现出体积分数逐步增加的梯度组织. 实验表明挤压温度对挤压后共晶组织分布有明显的影响. 经过挤压提高了样品中心冲击韧性和表面耐磨性.","authors":[{"authorName":"杨昭","id":"7fa09f30-729f-4430-b4ae-f20ab1a54aac","originalAuthorName":"杨昭"},{"authorName":"张海峰","id":"b63fa8d7-ce77-4b3d-a081-07e59e6f9b81","originalAuthorName":"张海峰"},{"authorName":"王爱民","id":"934066aa-be0f-409b-8e23-ed984195f16a","originalAuthorName":"王爱民"},{"authorName":"丁炳哲","id":"1ac3e045-3543-4e5e-abaf-b06df2497009","originalAuthorName":"丁炳哲"},{"authorName":"胡壮麒","id":"ade52202-ee24-4fe0-b84b-031b612aca93","originalAuthorName":"胡壮麒"}],"categoryName":"|","doi":"","fpage":"164","id":"f5e596b7-584d-4b6a-8cbf-3f5bbbc356b3","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"bb9c12ac-5a89-49d2-aa9e-2935d616c56c","keyword":"固态金属挤压","originalKeyword":"半固态金属挤压"},{"id":"5aa490ec-30d5-4f4f-94fa-9edafe2eb6b8","keyword":"null","originalKeyword":"null"},{"id":"22d2eb54-566e-4960-986f-0c06cce2fd20","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_2_10","title":"固态挤压形成高铬铸铁梯度组织材料","volume":"39","year":"2003"},{"abstractinfo":"通过挤压具有等轴状初晶组织的固态高铬铸铁,样品的液相在应力作用下被挤向表面,凝固后形成了共晶组织沿径向由内向外呈现出体积分数逐步增加的梯度组织实验表明挤压温度对挤压后共晶组织分布有明显的影响.经过挤压提高了样品中心冲击韧性和表面耐磨性.","authors":[{"authorName":"杨昭","id":"623f2506-1036-436a-8717-bb1bb39de180","originalAuthorName":"杨昭"},{"authorName":"张海峰","id":"60e5f207-a82e-4dd9-bb1e-024b3a603f02","originalAuthorName":"张海峰"},{"authorName":"王爱民","id":"8653c4a7-836e-4c42-8a39-377ebaa3b9ab","originalAuthorName":"王爱民"},{"authorName":"丁炳哲","id":"3e8aad3a-9780-4009-a53e-d6fcdf39cdcd","originalAuthorName":"丁炳哲"},{"authorName":"胡壮麒","id":"76d77efa-4bd0-46e1-9af8-153cc77cf1a9","originalAuthorName":"胡壮麒"}],"doi":"10.3321/j.issn:0412-1961.2003.02.011","fpage":"164","id":"2ec666be-4759-4014-befa-53f1d03a54c6","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"dc5b1f7d-3d04-44db-adb0-b7af59ebfb6d","keyword":"固态金属挤压","originalKeyword":"半固态金属挤压"},{"id":"57c512ac-b7a7-428d-9ccd-26330c9702ae","keyword":"高铬铸铁","originalKeyword":"高铬铸铁"},{"id":"3336486f-e9f3-4b10-811f-02064dca95d7","keyword":"梯度材料","originalKeyword":"梯度材料"}],"language":"zh","publisherId":"jsxb200302011","title":"固态挤压形成高铬铸铁梯度组织材料","volume":"39","year":"2003"},{"abstractinfo":"采用近液相线铸造的方法制备出ZL201合金固态锭坯,并对其进行了触变挤压成形,利用金相显微镜观察r其组织变化,并与常规铸造ZL201合金的组织与挤压成形件的组织进行了对比分析.研究结果表明:(1)固态合金挤压后组织更细小均匀,消除了宏观偏析、晶内疏松等问题,有利于性能的提高.(2)固态挤压组织更细小均匀的主要原因是在挤压过程中晶粒的变形量、畸变区域很大,故在动态再结晶的过程中,固态合金转变的体积分数大于常规铸造合金,所以同态合金挤压件组织更加细小均匀.","authors":[{"authorName":"王英杰","id":"a341ad69-7e6b-4de8-af4a-a6a230ac3236","originalAuthorName":"王英杰"},{"authorName":"王平","id":"183ccea0-1482-4d44-ae49-528f001e9fb5","originalAuthorName":"王平"}],"doi":"10.3969/j.issn.1005-5053.2011.z1.015","fpage":"63","id":"e07db517-69c3-41da-806c-06b3e9341d22","issue":"z1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"74baccc0-97a4-4253-8cd1-a857cc812730","keyword":"ZL201合金","originalKeyword":"ZL201合金"},{"id":"e8d5324b-ceee-47b3-8279-354ede3bf0a0","keyword":"固态","originalKeyword":"半固态"},{"id":"b20e1058-0b10-4b16-beba-bab711a7ec3c","keyword":"近液相线铸造","originalKeyword":"近液相线铸造"},{"id":"8a8240e7-fd2c-4149-8f61-1c9dbafae5b0","keyword":"挤压","originalKeyword":"挤压"}],"language":"zh","publisherId":"hkclxb2011z1015","title":"ZL201合金固态铸造与挤压成形显微组织","volume":"31","year":"2011"},{"abstractinfo":"通过与常规铸造方法的比较,研究固态触变挤压对ZA27合金变质、热处理组织和力学性能的影响.结果表明:固态挤压态合金的密度较铸态合金提高了3%,合金经Sc变质或者固态挤压都获得了细小而均匀的近似球状组织,而Sc变质结合固态挤压的球状组织具有最高的圆整度;经T6热处理的固态挤压合金由细小的初生α相和共析(α+η)组织组成,说明固态挤压可促进ε相溶解、减少三元共晶(β+η+ε)组织的含量.力学性能测试表明,ZA27合金经固态挤压+Sc变质+T6热处理后其抗拉强度,伸长率和布氏硬度分别达到586.01MPa,17.57%及171HB.","authors":[{"authorName":"刘占勇","id":"ec501dad-9f66-42d6-91d5-31cdfaff74a4","originalAuthorName":"刘占勇"},{"authorName":"左孝青","id":"35f997ed-fce9-4981-9bfa-98c55f82aad2","originalAuthorName":"左孝青"},{"authorName":"钟子龙","id":"09302dfe-9954-4662-9c35-6c87c49f0398","originalAuthorName":"钟子龙"},{"authorName":"李威威","id":"87052051-6e1d-48c6-8d92-4c41ecaebab9","originalAuthorName":"李威威"}],"doi":"10.11868/j.issn.1001-4381.2015.000920","fpage":"17","id":"1c586af8-9b4f-46e7-ae4c-a3d21fdcf2fb","issue":"6","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"775555a3-8d81-4689-80c6-abe774d2b852","keyword":"ZA27合金","originalKeyword":"ZA27合金"},{"id":"ac343851-e593-448c-b037-f22fa924e5aa","keyword":"Sc变质","originalKeyword":"Sc变质"},{"id":"233af9eb-008e-471d-8bad-14e9dd211304","keyword":"固态触变挤压","originalKeyword":"半固态触变挤压"},{"id":"97f72c78-72b3-471d-a618-198f22765300","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"57a84cbe-c973-4344-bb5c-5f533938b9f0","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clgc201706003","title":"固态触变挤压对ZA27合金组织和力学性能的影响","volume":"45","year":"2017"},{"abstractinfo":"采用固态挤压方法生产零部件,可以消除铸造方法产生的气孔或疏松.通过线性回归的方法建立固态A356铝合金在570~580℃高固相率温度范围内,不同应变和应变速率下的刚粘塑性本构关系.采用商业有限元模拟软件Deform-3D对A356铝合金材料固态挤压成形齿轮泵泵体的成形过程进行数值模拟,得到成形过程的流动速度场、有效应力应变场、压力-行程曲线等,并对其进行简要的分析,得出成形过程中的金属流动情况.","authors":[{"authorName":"徐平","id":"a78b09cf-00a7-4361-9d7c-3c9c2c74cc19","originalAuthorName":"徐平"},{"authorName":"杨昆","id":"9fb18d63-ceef-495a-9485-6f27e945e721","originalAuthorName":"杨昆"},{"authorName":"于英华","id":"15ca2863-7ebf-4353-9a2d-dae0d3d9d694","originalAuthorName":"于英华"}],"doi":"10.3969/j.issn.1004-244X.2010.05.004","fpage":"12","id":"404f0493-0d02-4d85-bf75-9915cbd03423","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"66917fc7-ebc0-4ee4-b713-e81efa59408a","keyword":"固态挤压成形","originalKeyword":"半固态挤压成形"},{"id":"50b8d314-8f00-45f7-9c87-bc62c60f9528","keyword":"A356铝合金","originalKeyword":"A356铝合金"},{"id":"0a13683e-d0b5-4399-80f5-87520c5dc170","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"83afc35d-bcb3-47d9-bae0-ff239dafbb7a","keyword":"本构关系","originalKeyword":"本构关系"}],"language":"zh","publisherId":"bqclkxygc201005004","title":"铝合金齿轮泵泵体固态挤压成形的数值模拟研究","volume":"33","year":"2010"}],"totalpage":571,"totalrecord":5708}