Y.W.Bao
,
Y.C.Zhou
金属学报(英文版)
Creep and stress relaxation behavior, the elastic modulus and fracture toughness of machinable Ti3SiC2 at various temperatures from 20 to 1250℃ were investigated by means of three-point bending tests. The experiments were performed respectively at: (i) fixed stress and changed temperatures, and (ii) fixed temperature and changed stresses. A creep resistance parameter that represents the probability of creep deformation in a given condition was defined as a function of both applied stress and the threshold stress, varying in a range from 0 to 1. Elastic modulus at high temperatures was measured through comparing relative slopes of loading curves in cyclic loading curve. The fracture toughness measured by SENB method showed a stable value in the range of 25-1000℃, but over 1000℃, it declined abruptly from ~6.7MPa.m^1/2 to~2.0MPa.m^1/2 at 1200℃.
关键词:
high-temperature
,
null
,
null
Y.W.Bao
,
Y.F.Han
,
F.T.Gong
金属学报(英文版)
Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stressuniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.
关键词:
glass
,
null
,
null