W.J. Park
,
S. Ahn
,
R. Schmees
,
and Nack J. Kim(1)(Center for Advaned Aerospace Materials
,
POSTECH. Pohang 790-784
,
Korea )2)(Research Institute of industrial Science & Technology
,
Pohang 790-600
,
Korea )3)(Pratt and Whitney
,
West Palm Beach
,
FL
,
USA Manuscript received 26 August 1996)
金属学报(英文版)
The effects of additions of Ti and W on microstructure and mechanical properties of rapidly solidified Al-Fe-V-Si alloys were investigated. Alloy powders were produced by the centrifugal rotary atomization process. After atomization, powders were screened to various mesh sizes to see the effect of powder size on the mechanical properties.These Powders were consolidated into billets using conventional powder metallurgy process, and then extruded into bar form.Microstructural analysis shows that the W addition results in the heterogeneous microstructure.On the other hand, the Ti addition refines the microstructure.Alloy containing both Ti and W has the highest thermal stability of the dispersoid. These variations in the microstructure are well reflected in the mechanical properties in that the Ti containtng alloys (with or without W) have the higher strength and ductility than the W containing alloy. It also shows that the alloys made of the coarser powders have better combinations of strength and ductility than those made of the finer powders.
关键词:
:rapid solidification
,
null
,
null