{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"主要从3个方面阐述了硅粉对硬化水泥浆体微结构影响的研究进展.同时预测该项研究今后的发展方向.","authors":[{"authorName":"李新宇","id":"068d2a85-fdd9-4a0a-be24-6d97097bfd7a","originalAuthorName":"李新宇"},{"authorName":"方坤河","id":"8231ca57-e394-4c25-946e-70d68526703c","originalAuthorName":"方坤河"}],"doi":"10.3969/j.issn.1001-1625.2003.01.012","fpage":"54","id":"5da3c2d1-a17f-4003-b0f2-2d52ef927892","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"76df2374-5fdc-44fe-b128-ffd39efacc31","keyword":"硬化水泥浆体","originalKeyword":"硬化水泥浆体"},{"id":"cc623203-ff00-4fd6-9681-777e5320193f","keyword":"硅粉","originalKeyword":"硅粉"},{"id":"4e95d844-36d0-4ef2-b964-e927c52f242b","keyword":"微结构","originalKeyword":"微结构"},{"id":"4fcaf543-6a47-4c3a-8b23-d1c2da652dc8","keyword":"孔结构","originalKeyword":"孔结构"},{"id":"5b40e869-57b7-4209-9386-3b89291f0fa2","keyword":"界面","originalKeyword":"界面"},{"id":"8a62bf03-21ff-40c6-bc25-830a151d7ff5","keyword":"火山灰效应","originalKeyword":"火山灰效应"},{"id":"79279e5e-f878-4699-a938-379b6d753496","keyword":"微集料效应","originalKeyword":"微集料效应"}],"language":"zh","publisherId":"gsytb200301012","title":"硅粉对硬化水泥浆体微结构的影响的研究进展","volume":"22","year":"2003"},{"abstractinfo":"自清洁和空气净化能力是绿色建筑发展的两个重要方向,它们不仅使建筑体向功能多样化方向发展,而且为新材料的应用提供了平台.因与大量城市环境污染物(氮氧化物,挥发性有机化合物等)直接接触,具有空气净化能力的光催化水泥基材料引起了人们广泛关注.在过去几十年里,通过使用直接喷洒到浆体表层或与水泥原材料预先共混的方法,国内外已相继将TiO2光催化材料应用到了一些实际工程中.但TiO2光催化剂在水泥基材料中高效和稳定发挥其性能仍需解决两个关键问题:(1)它在水泥基体中分散性和效能耐久性问题;(2)其量子效率和对可见光利用率问题.对于后者,目前的材料制备与改性方法,如金属、非金属改性等已能获得量子效率和可见光活性都较好的TiO2类光催化材料.研究表明,水泥水化产物(氢氧化钙、C-S-H凝胶等)的包覆、后期碳化所致气体和光线扩散孔隙的降低是导致TiO2光催化剂在水泥基材料中耐久性和利用率差的可能原因.我们前期报道了一种将纳米TiO2催化剂预先负载到水泥基材料用的多孔粗集料表面,然后将负载型催化剂整体引入到水泥基体中的催化剂应用方法,发现该法能有效提升TiO2催化剂在水泥基材料中的催化效率和耐久性.微米级活性粉煤灰具有良好的水泥基材料兼容性,通过采用简单的碱激发手段,可形成孔径小于50 nm的介孔和微孔类沸石材料,从而影响光催化材料的催化性能.因此,基于粉煤灰的特征,为了进一步提高TiO2催化剂在水泥基材料中的应用效率和催化耐久性,我们采用碱激发法获得了大比表面和介孔结构的沸石类粉煤灰材料,将其用于负载纳米TiO2催化剂,然后引入到水泥基体中,制备了沸石类粉煤灰/TiO2光催化水泥基材料,同时研究了光还原Ag修饰对沸石类粉煤灰/TiO2光催化水泥基材料的催化性能影响及其催化耐久性.结果表明,具有分级孔结构的沸石粉煤灰载体可有效提升纳米TiO2光催化剂在水泥基体中的暴露度,同时还增加了其对气相苯(200×10–6初始浓度)的光催化去除能力.最佳Ag修饰量(1.4×10–4 wt%)沸石类粉煤灰/TiO2光催化水泥样品对气相苯的光催化伪一级反应速率常数达到9.91×10–3 min?1,分别是沸石类粉煤灰/TiO2光催化水泥样品和纯TiO2光催化水泥样品效能的3和10倍.光催化稳定性结果发现,在3次催化循环后,样品对气相苯的光催化去除率仍能达到96.3%(180 min).考虑到水泥基材料碳化是影响光催化剂使用耐久性的一个关键因素,我们还评估了沸石类粉煤灰/TiO2光催化水泥样品28 d加速碳化后的光催化性能.结果表明,经过加速碳化后,样品对气相苯光催化去除率只降低了11%,相比于同条件下纯TiO2水泥样品性能,其催化耐久性显著提高,表明沸石类粉煤灰载体可有效提升TiO2在水泥基体中的催化耐久性.这可能是由于其高孔隙特性可降低周围水泥水化产物的形成量,如高钙/硅比C-S-H凝胶及氢氧化钙结晶,进而降低了这些水化产物碳化所带来的影响.","authors":[{"authorName":"杨露","id":"1c0e7b16-f0c7-4795-8a50-7bb6dbe0781f","originalAuthorName":"杨露"},{"authorName":"高衣宁","id":"50d2f083-40bb-41c2-b4c3-45506cbef965","originalAuthorName":"高衣宁"},{"authorName":"王发洲","id":"efa595f8-d8ce-4b4a-a9e8-df71075024d4","originalAuthorName":"王发洲"},{"authorName":"刘鹏","id":"d7b0b333-d192-4b33-bca3-642708224e40","originalAuthorName":"刘鹏"},{"authorName":"胡曙光","id":"22218036-4506-456c-bc8c-3c15031595f1","originalAuthorName":"胡曙光"}],"doi":"10.1016/S1872-2067(16)62590-1","fpage":"357","id":"37c1ae71-0d49-45fc-aa27-f303e39dd5ad","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8d8f3824-cca8-4650-ba8a-68e897f11d5a","keyword":"光催化水泥基材料","originalKeyword":"光催化水泥基材料"},{"id":"5f211e8d-3d70-4c3f-a868-c9edd0c7edde","keyword":"沸石粉煤灰","originalKeyword":"沸石粉煤灰"},{"id":"8525fbfb-fdea-4bea-8bb0-00621d4c2011","keyword":"光催化效果","originalKeyword":"光催化效果"},{"id":"4704cccb-a705-41b1-89de-c4e80486ac1f","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"5c4fc180-60b8-4e6b-a346-5a9b128b1dd5","keyword":"银修饰","originalKeyword":"银修饰"}],"language":"zh","publisherId":"cuihuaxb201702020","title":"TiO2@Ag修饰的粉煤灰微集料增强水泥基材料光催化性能","volume":"38","year":"2017"},{"abstractinfo":"用快速砂浆棒法确定了以板岩矿为集料的混凝土中存在着较严重的碱集料反应,设计了一系列实验,分析了其引起的原因.在混凝土中引入一定量的碎石型陶粒、LiOH和粉煤灰等均可有效地抑制其碱集料反应.分析发现碎石型陶粒表面大量的孔洞吸收碱集料反应产生的膨胀物质,从而抑制了碱集料反应的破坏.","authors":[{"authorName":"刘哲","id":"a7a0cb2f-e199-4bb1-9cbc-2a30fa55660c","originalAuthorName":"刘哲"},{"authorName":"李玉平","id":"ac224c5a-6571-4777-a182-0821c2a7d25b","originalAuthorName":"李玉平"},{"authorName":"王伟","id":"cca52ff1-cb20-413f-acf8-ada9c16cf723","originalAuthorName":"王伟"},{"authorName":"郭爱芬","id":"e0870efb-1a3d-4866-9996-2e9417300de9","originalAuthorName":"郭爱芬"},{"authorName":"师润城","id":"ae1c6c27-36b2-40a3-a0cb-ea17f50bb92f","originalAuthorName":"师润城"},{"authorName":"魏早宁","id":"5e183bf6-9249-4355-91c2-b711d09b694a","originalAuthorName":"魏早宁"}],"doi":"","fpage":"188","id":"6e4da337-4e46-4a6a-9743-3ba7999d1ded","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"0c8bae6f-eb75-421b-8050-18aeba9567a4","keyword":"碱集料反应","originalKeyword":"碱集料反应"},{"id":"07e27562-2d10-4abb-940b-546dcaebe2a7","keyword":"板岩","originalKeyword":"板岩"},{"id":"690f2bfa-3388-4994-a7ec-55ae2d5780e0","keyword":"陶粒","originalKeyword":"陶粒"},{"id":"6e19eec1-f6bf-4579-9842-382ac2da8ca8","keyword":"快速砂浆棒法","originalKeyword":"快速砂浆棒法"}],"language":"zh","publisherId":"gsytb201501033","title":"以板岩为集料的混凝土中碱集料反应及其抑制","volume":"34","year":"2015"},{"abstractinfo":"本文使用直接模拟Monte Carlo法对三维直微通道内的气体流动进行了数值模拟,对比了不同截面形状的通道不同驱动压差的情况,探讨了截面形状对微通道内气体流动三维效应的影响以及三维效应对流量-压差关系的影响.","authors":[{"authorName":"王沫然","id":"b6b89766-0529-4fbd-940f-4edd3b0e91d3","originalAuthorName":"王沫然"},{"authorName":"李志信","id":"2e34f655-4723-4ba8-baa0-fe67ba48bff3","originalAuthorName":"李志信"}],"doi":"","fpage":"840","id":"a62dc241-b563-4374-8f59-6c975ca6d90e","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"20de5839-ae89-4011-9630-67bc22586d7b","keyword":"三维效应","originalKeyword":"三维效应"},{"id":"95e64dd3-9564-4d75-a65b-18ef9bf363c5","keyword":"微气体流动","originalKeyword":"微气体流动"},{"id":"6695c5a3-7b0e-42e2-892b-df08f802702f","keyword":"直接模拟Monte Carlo","originalKeyword":"直接模拟Monte Carlo"}],"language":"zh","publisherId":"gcrwlxb200405035","title":"微通道内气体流动的三维效应","volume":"25","year":"2004"},{"abstractinfo":"微注塑成型中的粘性耗散效应引起的熔体充模流动行为变化,直接影响微塑件的成型质量。应用双料筒毛细管流变仪与微尺度口模和高精度温度传感器等组成的测量装置,对丙烯腈-丁二烯-苯乙烯共聚物(ABS)熔体以不同剪切速率和口模入口温度,流经直径350μm和500μm而长径比不同口模时的粘性耗散效应进行了实验测量和数值模拟。结果表明,微通道中的熔体粘性耗散效应随剪切速率的增加而明显增强,随通道直径的减小和入口熔体温度的升高而减弱;但通道直径一定时,长径比的增大也会导致粘性耗散作用增强。","authors":[{"authorName":"于同敏","id":"2e4a0b33-14d3-48cb-a9f2-27cf7563a49a","originalAuthorName":"于同敏"},{"authorName":"贝海鑫","id":"e2ce069a-d96c-4f03-afc1-10f91c21603e","originalAuthorName":"贝海鑫"}],"doi":"","fpage":"164","id":"8fc5bdf2-b608-4d48-bb9a-2639e6ec16cf","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"3ba80099-f35c-4bbb-8234-92c707f85b85","keyword":"微注塑成型","originalKeyword":"微注塑成型"},{"id":"72004596-0fec-42c0-a5d8-e9c673ee608d","keyword":"充模流动","originalKeyword":"充模流动"},{"id":"ecaed2f5-2297-40d5-a18d-63c67523501e","keyword":"粘性耗散","originalKeyword":"粘性耗散"},{"id":"2aaf3ff0-3c0c-4f61-a045-0e7e73d6ef2b","keyword":"出口温升","originalKeyword":"出口温升"}],"language":"zh","publisherId":"gfzclkxygc201212041","title":"微注塑充模流动中的粘性耗散效应","volume":"28","year":"2012"},{"abstractinfo":"假定在某些脆性无序材料内含有相同的微裂缝随机分布概率密度,但具有不同无序度的情况下,建立了模拟材料力学行为的二维不连续位移法边界元数值计算模型.实现了材料微裂缝生长、扩展到最终破坏的全过程数值仿真.根据分形几何理论确定了材料断裂表面几何形貌的分形维数.得到了材料的断裂强度随微裂缝长度随机分布无序度的增加而降低的规律性.数值模拟结果符合Bazant尺寸效应定律,并进一步证实了脆性或准脆性无序材料产生尺寸效应的微观机理.","authors":[{"authorName":"张彤","id":"6064e00d-e73e-4069-83b6-6913638b2baf","originalAuthorName":"张彤"},{"authorName":"孟庆元","id":"08d9f6bc-0562-4085-9bae-28ac44e4efe0","originalAuthorName":"孟庆元"}],"doi":"10.3969/j.issn.1005-0299.2004.03.023","fpage":"312","id":"8ea5808b-d0a2-41d5-813f-7415ec2b4138","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"59e09f31-41e5-4d55-ae38-a101c1faee22","keyword":"微裂缝无序度","originalKeyword":"微裂缝无序度"},{"id":"8ec65e05-296a-4408-b1d6-edaa1094ec4b","keyword":"分形几何","originalKeyword":"分形几何"},{"id":"a83a0e71-39f1-48f2-b3d7-f4e49cc381fb","keyword":"尺寸效应","originalKeyword":"尺寸效应"},{"id":"3d7bf213-d672-4128-96f1-e662087577a6","keyword":"断裂韧性","originalKeyword":"断裂韧性"},{"id":"a03f9b19-643f-47e1-adc0-48230ea240d7","keyword":"边界元","originalKeyword":"边界元"}],"language":"zh","publisherId":"clkxygy200403023","title":"脆性材料微裂缝无序度与尺寸效应","volume":"12","year":"2004"},{"abstractinfo":"将超细羰基铁粉按一定比例与经粉磨处理的粘土粉等原材料混合,压制成型后经煅烧、破碎制备得到了导电功能集料;采用XRD、SEM等测试手段研究了导电功能集料的矿物相及微观结构,同时对其导电性能、气孔率和吸水率,以及其对碳纤维混凝土导电性能所起的作用等进行了研究.结果表明,超细羰基铁粉可作为导电相存在于陶质基体之中,电子通过隧道跃迁效应而在铁粉微粒间形成电流,6.5%的体积掺量是形成导电通路的逾渗阈值;超细羰基铁粉在煅烧过程中通过影响液相的形成而影响集料的气孔率和吸水率等;在同样碳纤维掺量下,导电功能集料与普通不导电集料相比可显著降低混凝土的体积电阻率.","authors":[{"authorName":"何永佳","id":"6059c235-1773-4334-b537-19024e698203","originalAuthorName":"何永佳"},{"authorName":"吕林女","id":"d2ca4a05-b906-4130-8f6f-c2eabf27b534","originalAuthorName":"吕林女"},{"authorName":"邓宵","id":"8c159594-8464-49fd-a625-59529db447f0","originalAuthorName":"邓宵"},{"authorName":"胡曙光","id":"c84de305-c0bd-416e-a559-a2412f92769d","originalAuthorName":"胡曙光"}],"doi":"10.3969/j.issn.1001-9731.2013.14.024","fpage":"2083","id":"0dd32b4b-4155-476b-8cc5-bfc1b6e45013","issue":"14","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"cff1a90e-75cb-4b39-9a0c-fa4093df48dc","keyword":"超细羰基铁粉","originalKeyword":"超细羰基铁粉"},{"id":"64c3a594-e39a-4017-a1e9-ee8ef0221af5","keyword":"导电功能集料","originalKeyword":"导电功能集料"},{"id":"15c409e1-dd59-4c1a-8c87-8c66f3aa8be0","keyword":"导电混凝土","originalKeyword":"导电混凝土"}],"language":"zh","publisherId":"gncl201314024","title":"掺超细羰基铁粉的导电功能集料制备与性能","volume":"44","year":"2013"},{"abstractinfo":"基于轻集料多孔可吸附性,采用常压与负压浸泡两种方法将不同阻尼材料(水和聚合物乳液)导入多孔轻集料中制备出减振集料并用于配制高强混凝土,在分析减振集料等体积取代普通集料对混凝土强度和阻尼功能影响的基础上,重点研究其引入对混凝土内部湿度与收缩性能影响,并结合 SEM与MIP 分析其微观结构。结果表明:掺加适量减振集料可显著提高混凝土阻尼功能而不明显降低其强度,减振集料可发挥内养护作用并明显改善混凝土收缩性能,延长膨胀剂作用时间,优化水泥石孔隙结构。","authors":[{"authorName":"田耀刚","id":"4199a657-e605-498f-aea8-679ae1a18c6c","originalAuthorName":"田耀刚"},{"authorName":"朱琳","id":"2306db3c-e9b7-4fc8-bd15-f9c2a8bb9026","originalAuthorName":"朱琳"},{"authorName":"王帅飞","id":"71b277b2-3348-48c9-ad3f-5af2b3b4fcb8","originalAuthorName":"王帅飞"},{"authorName":"杨婷婷","id":"108b7579-e5fa-4942-bbf6-c83dec5c31a4","originalAuthorName":"杨婷婷"},{"authorName":"贾侃","id":"10854f7d-3ea9-4893-a3be-d391828eb89d","originalAuthorName":"贾侃"},{"authorName":"李炜光","id":"102a470d-661b-4735-84d6-2ece788b7fa5","originalAuthorName":"李炜光"}],"doi":"10.3969/j.issn.1001-9731.2016.11.003","fpage":"11013","id":"954aa532-d8a4-4a11-8bb3-4adc84e7316a","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f8ac7aab-9244-46e8-a1e8-9f81defb9bb0","keyword":"减振集料","originalKeyword":"减振集料"},{"id":"3dc5c4f5-1f40-475d-98e7-6f7df516b81d","keyword":"阻尼功能","originalKeyword":"阻尼功能"},{"id":"72fa30c2-efa9-477b-bb54-28fc77ea5b6d","keyword":"高强混凝土","originalKeyword":"高强混凝土"},{"id":"04e013e5-ca36-4d69-a668-f2b048c5f244","keyword":"收缩","originalKeyword":"收缩"}],"language":"zh","publisherId":"gncl201611003","title":"减振集料对高强混凝土的收缩性能影响?","volume":"47","year":"2016"},{"abstractinfo":"本文提出等体积橡胶集料替代细集料砂子并将橡胶集料的质量计入砂率公式来直接进行橡胶集料混凝土配合比设计的方法,并与均匀试验设计相结合,探讨橡胶集料的掺量、级配及其他多因素对混凝土强度的影响及其变化规律,建立橡胶集料混凝土抗压强度、劈裂抗拉强度的回归方程.结果表明:回归方程能够准确描述各因素与橡胶集料混凝土强度之间的关系.在混凝土中掺入不同质量分数、不同粗细程度的橡胶集料,混凝土抗压强度、劈裂抗拉强度和抗弯强度都有所降低,但下降规律有所不同.随橡胶集料掺量的增加,混凝土的拉压比和折压比在增大,韧性得到改善, 压缩破坏表现出明显的韧性破坏特征.","authors":[{"authorName":"周梅","id":"02e6c9e5-682b-4eac-b991-2b84417580eb","originalAuthorName":"周梅"},{"authorName":"张晓帆","id":"67e811f0-a39c-48c7-8ab9-ec6a0c5c5ded","originalAuthorName":"张晓帆"},{"authorName":"薛忠泉","id":"0c1e41d5-996c-45cf-a4c4-0235c597b3b1","originalAuthorName":"薛忠泉"}],"doi":"","fpage":"798","id":"4e114891-3df2-4fe7-9ac6-bde270fc9b59","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"7decf695-4c9a-4477-a619-a12734b3d51b","keyword":"橡胶集料","originalKeyword":"橡胶集料"},{"id":"565b61d0-897b-43ba-a83e-4d0163187b59","keyword":"掺量","originalKeyword":"掺量"},{"id":"cd2128b2-112b-4e55-ac78-41f505bff8d2","keyword":"级配","originalKeyword":"级配"},{"id":"dcd30413-d666-4ae0-bc9b-11218ef92638","keyword":"强度","originalKeyword":"强度"}],"language":"zh","publisherId":"gsytb201004010","title":"橡胶集料混凝土配合比设计及强度试验研究","volume":"29","year":"2010"},{"abstractinfo":"为有效减轻车辙深度,掺加多孔玄武岩集料和粉煤灰漂珠,采用\"三步\"成型工艺制备沥青基复合材料,测试其路用性能,利用光照法研究其隔热功能,并借助扫描电镜(SEM)分析沥青胶浆与集料界面微观结构.结果表明,掺加多孔集料后复合材料路用性能满足相关要求;随粉煤灰漂珠和多孔玄武岩集料体积分数增加,抗压强度、动稳定度和浸水残留稳定度等路用性能先下降后升高;多孔玄武岩集料有利于抗滑性能提高.多孔集料有效阻止热量传递;照射时间为120min时,多孔集料与普通集料复合材料的中部和底部温度差分别达到13和16℃.与普通集料复合材料相比,多孔集料复合材料胶浆与集料界面区结构致密,沥青胶浆较好地粘附于多孔集料表面,空隙等缺陷较少,阻隔热量传递,降低内部温度.","authors":[{"authorName":"王振军","id":"53a395fb-900a-4a68-b0c5-45713ef565a7","originalAuthorName":"王振军"},{"authorName":"王宇","id":"0d89e430-019f-41d5-9a4c-78a614792c30","originalAuthorName":"王宇"},{"authorName":"蒋玮","id":"3e1537f5-4d93-4b95-9d5f-8efb489f7a3e","originalAuthorName":"蒋玮"},{"authorName":"肖晶晶","id":"b447a169-d978-4e35-9e41-4b0077ca6065","originalAuthorName":"肖晶晶"}],"doi":"","fpage":"827","id":"d27e32d1-02a0-4fc2-ad3b-92f437aa2168","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6eb84678-b244-4a0d-8a79-621821c27c81","keyword":"多孔玄武岩集料","originalKeyword":"多孔玄武岩集料"},{"id":"9adc35ab-24bc-4277-924b-9c8cc955cbc9","keyword":"粉煤灰漂珠","originalKeyword":"粉煤灰漂珠"},{"id":"9641a6da-b60c-4803-97f5-eeb16ef3884b","keyword":"沥青基复合材料","originalKeyword":"沥青基复合材料"},{"id":"5f5f5c40-fcd3-45d2-a805-a950cd0e10b8","keyword":"隔热功能","originalKeyword":"隔热功能"}],"language":"zh","publisherId":"gncl201105014","title":"多孔集料沥青基复合材料的隔热功能","volume":"42","year":"2011"}],"totalpage":2100,"totalrecord":20995}