Hui Lu
材料科学技术(英文)
The perovskite Cr-doped La0.6Sr0.4CrxFe1-xO3-δ (x=0.10, 0.20) oxides were synthesized via the citrate gel method. The perovskite forming of the La0.6Sr0.4CrxFe1-xO3-δ (x=0.10, 0.20) oxides were studied by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Structural and chemical stability under H2-containing helium atmospheres of La0.6Sr0.4CrxFe1-xO3-δ (x=0.10, 0.20) were investigated by TG and XRD. The sintering microstructures of the perovskite La0.6Sr0.4CrxFe1-xO3-δ (x=0.10, 0.20) ceramics were investigated by scanning electron microscopy (SEM), and the electrical conductivities of both oxide ceramics were also measured up to 900 ±C. The results demonstrated that the chemical stability of the Co-free La0.6Sr0.4CrxFe1-xO3-δ (x=0.10, 0.20) oxides was significantly improved compared to the Co-containing La0.6Sr0.4CrxFe1-xO3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxides. The incorporation of Cr cations in the B-site of the pervoskite oxides resulted in the improved structural and chemical stability of the as-synthesized La0.6Sr0.4CrxFe1-xO3-δ(x=0.10, 0.20) oxides.
关键词:
Perovskite