欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1)
  • 图书()
  • 专利()
  • 新闻()

A New Flatness Pattern Recognition Model Based on Cerebellar Model Articulation Controllers Network

HE Haitao , LI Yan

钢铁研究学报(英文版)

In the traditional flatness pattern recognition neural network, the topologic configurations need to be rebuilt with a changing width of cold strip. Furthermore, the large learning assignment, slow convergence, and local minimum in the network are observed. Moreover, going by the structure of the traditional neural network, according to experience, the model is timeconsuming and complex. Thus, a new approach of flatness pattern recognition is proposed based on the CMAC (cerebellar model articulation controllers) neural network. The difference in fuzzy distances between samples and the basic patterns is introduced as the input of the CMAC network. Simultaneously, the adequate learning rate is improved in the error correction algorithm of this neural network. The new approach with advantages, such as high learning speed, good generalization, and easy implementation, is efficient and intelligent. The simulation results show that the speed and accuracy of the flatness pattern recognition model are obviously improved.

关键词: flatness;pattern recognition;CMAC neural network;fuzzy distance

出版年份

刊物分类

相关作者

相关热词