{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用高温高压釜模拟高含H2S/CO2的腐蚀环境,研究了Cl-对抗硫套管钢P110SS腐蚀速率、硫化物应力开裂和氢致开裂的影响.结果表明,抗硫套管钢P110SS的腐蚀速率随介质中Cl-浓度升高先增加后减小,当Cl-浓度达到50 g/L时,P110SS腐蚀速率达到最大值;抗硫套管钢P110SS没有出现硫化物应力开裂和氢致开裂的裂纹,其硫化物应力开裂和氢致开裂敏感性较低,原因是均匀细小的回火索氏体组织,有益元素铬、钼、钛、钕、钒的加入以及低含量的有害元素硫和磷.","authors":[{"authorName":"伍丹丹","id":"55bacd41-ccb2-4d26-b7b1-03c9bab11d07","originalAuthorName":"伍丹丹"},{"authorName":"肖琪","id":"ea8b9da0-48cb-4af9-8b25-371880186617","originalAuthorName":"肖琪"},{"authorName":"王树涛","id":"9f18cb58-6f77-48a2-8a72-e937839e1750","originalAuthorName":"王树涛"},{"authorName":"黄雪松","id":"31d17b27-4b70-4c65-8ecf-56d1ed35d767","originalAuthorName":"黄雪松"},{"authorName":"关建庆","id":"adb75af9-82c7-4d0a-b7ab-98ba84cad104","originalAuthorName":"关建庆"},{"authorName":"张庆生","id":"d3e39ca7-6a8a-4ed7-8b1a-a1fc60036ff4","originalAuthorName":"张庆生"}],"doi":"","fpage":"112","id":"a6dbf7e6-f1cb-4901-b37c-157ddae61a1f","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"761b3df1-7055-40ce-b698-be390e3bce1d","keyword":"抗硫套管钢P110SS","originalKeyword":"抗硫套管钢P110SS"},{"id":"52c3fc7d-1528-4465-b09d-6ad1c725226a","keyword":"高含H2S/CO2","originalKeyword":"高含H2S/CO2"},{"id":"4701820f-13e8-4f8b-b6fa-9476a97af8a1","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"14df826e-9e26-4988-8ca8-3b7010a13fde","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"b7a08899-affa-4e4b-b54a-36d3618bc1ff","keyword":"硫化物应力开裂","originalKeyword":"硫化物应力开裂"},{"id":"222972de-fa4d-4a4b-8ad4-bf333f255d60","keyword":"氢致开裂","originalKeyword":"氢致开裂"}],"language":"zh","publisherId":"fsyfh201402002","title":"抗硫套管钢P110SS在高含H2S/CO2、Cl-共存条件下的腐蚀行为","volume":"35","year":"2014"},{"abstractinfo":"利用高温高压反应釜模拟普光气田的工况环境,研究抗硫套管钢P110SS在高含H2S/CO2环境中的腐蚀行为和硫化物应力开裂(SSC)敏感性.结果表明,随着温度和H2S/CO2分压的升高,P110SS的腐蚀速率先降低后升高,而在相当于井中部工况的环境中,钢的腐蚀速率最低,腐蚀产物膜明显脱落.在高含H2S/CO2环境中,采用四点弯曲法加载达到P110SS屈服强度的90%时,试样表面未发现裂纹,表明SSC敏感性比较低.","authors":[{"authorName":"王树涛","id":"7b9b0288-ee1b-4eb4-a398-b4916da36006","originalAuthorName":"王树涛"},{"authorName":"郑新艳","id":"1a4d3842-8ab8-4c79-8512-64100b0947b2","originalAuthorName":"郑新艳"},{"authorName":"李明志","id":"a984c696-115d-41ed-87db-08c8265fba22","originalAuthorName":"李明志"},{"authorName":"黄雪松","id":"e5a7dab1-fed3-4b6c-9480-87dc40794d2b","originalAuthorName":"黄雪松"},{"authorName":"关建庆","id":"28deb50c-6774-40ed-9527-6ef21a27ca03","originalAuthorName":"关建庆"},{"authorName":"郑树启","id":"0843e6aa-2fb5-4852-841f-99ec86b60d4b","originalAuthorName":"郑树启"},{"authorName":"陈长风","id":"9b79fc0b-ee25-40fe-a7f5-9e55ba8c9995","originalAuthorName":"陈长风"},{"authorName":"陈月民","id":"5643efe4-eed4-4397-9a85-845756aed8a4","originalAuthorName":"陈月民"}],"doi":"","fpage":"7","id":"b865bd68-c58f-4ed4-9549-65cdb0d08c20","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"3f995772-7338-45ff-928c-e239f0c6b1ef","keyword":"抗硫套管钢P110SS","originalKeyword":"抗硫套管钢P110SS"},{"id":"93ca48be-122d-4b04-9537-578c9abb3f6a","keyword":"高含H2S/CO2","originalKeyword":"高含H2S/CO2"},{"id":"d6a8e4bc-2cc2-4f9c-b27b-96dd8e0bc2bb","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"424afbb2-3ee8-435c-9a6f-2fedb362a930","keyword":"硫化物应力腐蚀开裂","originalKeyword":"硫化物应力腐蚀开裂"}],"language":"zh","publisherId":"fskxyfhjs201301002","title":"抗硫套管钢P110SS在高含H2S/CO2环境中的腐蚀行为和硫化物应力开裂敏感性研究","volume":"25","year":"2013"},{"abstractinfo":"利用高温高压反应釜模拟普光气田的工况环境,采用慢应变速率拉伸试验(SSRT)方法研究了抗硫套管钢P110SS在高含H2S/CO2条件下的硫化物应力开裂(SSC)敏感性.结果表明,在腐蚀环境中P110SS的力学性能和塑性损伤比较严重;随着温度、H2S/CO分压升高,P110SS力学性能和塑性损伤逐渐减弱,SSC敏感性降低,温度起主导作用;SSC敏感性由高到低顺序:井口工况条件>井中部工况条件>井底工况条件;井口工况是防范SSC的重点.","authors":[{"authorName":"王树涛","id":"3ead9fae-01a5-4109-978d-7753ae7ff87e","originalAuthorName":"王树涛"},{"authorName":"郑新艳","id":"95c86ea2-6e8f-45f5-891c-876cb01fc4d9","originalAuthorName":"郑新艳"},{"authorName":"李明志","id":"0cc2b02a-15e7-4140-9713-edf46035f034","originalAuthorName":"李明志"},{"authorName":"黄雪松","id":"b6de9734-b4af-45a0-96e0-064d08966a64","originalAuthorName":"黄雪松"},{"authorName":"关建庆","id":"6961a709-ee75-43b8-a9de-1196c07c2504","originalAuthorName":"关建庆"},{"authorName":"郑树启","id":"2bed6fe4-59f6-4276-a707-69138e2cf9ad","originalAuthorName":"郑树启"},{"authorName":"陈长风","id":"2a5bb3b7-5a25-40aa-808a-5e6028aadad7","originalAuthorName":"陈长风"},{"authorName":"陈月民","id":"6e1efe21-fc7a-4413-8885-ac89662c0638","originalAuthorName":"陈月民"}],"doi":"","fpage":"189","id":"ab4b0c33-6968-4aa3-aa6a-009f97d95675","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"23e033cd-6af3-4bdf-b993-98b0abba79a5","keyword":"抗硫套管钢P110SS","originalKeyword":"抗硫套管钢P110SS"},{"id":"a3b0923f-7df0-482f-978e-25f594d39586","keyword":"高含H2S/CO2","originalKeyword":"高含H2S/CO2"},{"id":"b198af39-7527-4434-beb5-a75669a323d7","keyword":"慢应变速率拉伸试验","originalKeyword":"慢应变速率拉伸试验"},{"id":"92cab31c-9176-4bbd-b2ef-c03a18b4d16d","keyword":"硫化物应力开裂","originalKeyword":"硫化物应力开裂"}],"language":"zh","publisherId":"fsyfh201303001","title":"抗硫套管钢P110SS在高含H2S/C02条件下的硫化物应力腐蚀破裂敏感性","volume":"34","year":"2013"},{"abstractinfo":"用恒载荷拉伸法,结合腐蚀电化学测试技术和断口扫描电镜(SEM)分析技术,研究了P110钢在H2S/CO2NACE标准溶液中的硫化物应力腐蚀 (SSCC)行为。结果表明,随着溶液中的H2S含量增高,P110钢的自腐蚀电位(E corr})急剧下降,至极小值后缓慢升高,约5 h后达到稳定值直至断裂,试样呈解理状脆性断口;随溶液中通入CO2量的增大,P110 钢的自腐蚀电位(Ecorr)稍有增高,自腐蚀电流(Icorr})减小,试样断裂时间延长,断口由脆性解理向韧窝状韧性转化。这种现象的产生与H2S/CO2在钢表面的竞争吸附及P110钢在应力腐蚀环境中表面膜的拉伸破裂与再生有关。","authors":[{"authorName":"崔世华","id":"4c83ffaa-cfb6-4bb7-9d70-bd435a60857d","originalAuthorName":"崔世华"},{"authorName":"李春福","id":"70616ae0-955b-4041-b031-33e9679d30a6","originalAuthorName":"李春福"},{"authorName":"王朋飞","id":"ec6c241c-be02-433e-b43c-adce8f13b377","originalAuthorName":"王朋飞"},{"authorName":"邓洪达","id":"e7301cd1-4060-464a-a8fc-27e5820a1f4f","originalAuthorName":"邓洪达"}],"categoryName":"|","doi":"","fpage":"213","id":"c9b87e67-ff47-4337-8dbd-eb9ce2d6295f","issue":"3","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"b9cc90ec-9271-4c96-ad45-274f6e820a85","keyword":"P110","originalKeyword":"P110"},{"id":"731514b2-4f6a-4d0a-b3ef-62f4dcdf8b36","keyword":"H2S/CO2","originalKeyword":"H2S/CO2"},{"id":"71170bea-f01e-410d-8230-08bf7309b453","keyword":"sulfide stress corrosion cracking","originalKeyword":"sulfide stress corrosion cracking"}],"language":"zh","publisherId":"1005-4537_2010_3_10","title":"高含H2S/CO2环境中P110钢应力腐蚀","volume":"30","year":"2010"},{"abstractinfo":"采用高温高压模拟腐蚀试验、动电位扫描技术和X射线光电子能谱仪(XPS)等手段研究了镍基合金G3在高含H2S和CO2腐蚀环境中的腐蚀行为.结果表明,在高温高压(90℃,32 MPa,PH2s为3.4 MPa,体积分数10.49%,PCO2为3.3 MPa,体积分数为10.41%)的模拟气田采出液中,镍基合金G3发生了明显腐蚀,腐蚀产物由片状晶粒构成;在含50%H2S气田采出水中加入CO2促进了合金的腐蚀,当CO2的体积分数进一步提高到50%,合金点蚀敏感性下降;在50%H2S和50% CO2环境中,Cl-提高了合金点蚀敏感性,同时高浓度Cl-破坏了合金钝化膜自修复能力,G3在该腐蚀环境中形成的钝化膜由Cr2S3,Cr2O3,FeS,Fe2O3,Ni(OH)2和MoO3等组成.随着使用环境条件的恶化,合金钝化膜遭到破坏,腐蚀加速.","authors":[{"authorName":"邓洪达","id":"50a03ca5-c0e8-4b43-8c94-a3f1e351227d","originalAuthorName":"邓洪达"},{"authorName":"崔世华","id":"a5e1aa6d-966b-4725-b47a-14bd99bc4921","originalAuthorName":"崔世华"},{"authorName":"李春福","id":"c50853b8-57a7-4e31-aa3b-3ca91de1e6fc","originalAuthorName":"李春福"},{"authorName":"曹献龙","id":"8067024b-4a33-4d17-bbd4-9fcddba6c959","originalAuthorName":"曹献龙"},{"authorName":"兰伟","id":"f60128be-a2b5-4383-8fbd-da824f635039","originalAuthorName":"兰伟"}],"doi":"","fpage":"302","id":"9cb17606-3759-4697-bcdd-d5899ca244f3","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"49d7dbe7-f673-4c22-b6b1-50542dffc04e","keyword":"镍基合金G3","originalKeyword":"镍基合金G3"},{"id":"d4fea234-d702-49a3-bb26-f355ce5c7018","keyword":"H2S","originalKeyword":"H2S"},{"id":"18b9da58-59b4-470a-83d6-016f95f030a4","keyword":"CO2","originalKeyword":"CO2"},{"id":"7c9d8b0f-c9ae-4ae2-bf96-4ea423eb56f4","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"debb2ac0-bca5-45a4-995d-33b7dea49b0e","keyword":"钝化膜","originalKeyword":"钝化膜"}],"language":"zh","publisherId":"fsyfh201304007","title":"镍基合金G3在高含H2S和CO2环境中的腐蚀行为","volume":"34","year":"2013"},{"abstractinfo":"从H2S、CO2的腐蚀机理和形式出发,以四川高含H2S、CO2天然气对钻采设备的腐蚀为例,分析比较常用的电镀、热浸镀、喷涂有机涂料等技术在防腐领域中的重要作用.随着表面技术的更进一步发展, 热喷涂技术在防腐领域也显示出其独特的作用,它主要是利用耐腐蚀性好、结合强度高的Ni基合金、金属陶瓷等材料作为覆盖材料来保护钻采设备.","authors":[{"authorName":"陈茂军","id":"b26913a1-c703-4d6c-a8a6-7402e7ea57e3","originalAuthorName":"陈茂军"},{"authorName":"罗兴","id":"04d70041-306a-423c-85c5-3f528959df4f","originalAuthorName":"罗兴"}],"doi":"10.3969/j.issn.1001-3660.2006.01.026","fpage":"80","id":"ee100eae-218a-4769-834b-d5561ef54159","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"d4a1cf10-3e17-48aa-ad80-f4cb78a28f60","keyword":"硫化氢","originalKeyword":"硫化氢"},{"id":"09324e6f-dabb-4885-8724-5a9f372856ca","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"4f684553-fe2b-471a-9db9-b75ff9416fc1","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"09e33bdc-7c76-4715-9240-7656971dc1d0","keyword":"天然气井","originalKeyword":"天然气井"},{"id":"8e8e02d0-ab54-4bb0-9eb3-6225f1337faf","keyword":"钻采设备","originalKeyword":"钻采设备"},{"id":"17a66585-8568-4ad2-a924-9c0e7e727adf","keyword":"防蚀","originalKeyword":"防蚀"}],"language":"zh","publisherId":"bmjs200601026","title":"高含H2S和CO2天然气井中的钻采设备防腐措施","volume":"35","year":"2006"},{"abstractinfo":"采用腐蚀电化学动电位扫描技术和腐蚀产物膜的SEM、EDS等微观分析手段,研究了G-3合金在高含H2S/CO2腐蚀环境中,CO2、pH值、Cl-等不同因素对镍基合金G-3腐蚀行为的影响.结果表明:Cl-不利于G-3钝化膜的形成,且使腐蚀加剧;CO2的加入促进了G-3的腐蚀,pH值的增加使G-3的自腐蚀电位出现较大负移.并影响了腐蚀产物膜的稳定性.","authors":[{"authorName":"崔世华","id":"71cffbc7-575f-4c18-9028-80d2ddf778cb","originalAuthorName":"崔世华"},{"authorName":"李春福","id":"703f102f-254d-4fa3-b076-f92e6000fdda","originalAuthorName":"李春福"},{"authorName":"荣金仿","id":"eb19b2dd-2cbb-41c9-9b68-eae6cf99180e","originalAuthorName":"荣金仿"},{"authorName":"任强","id":"23dd2c40-4bcc-45b4-bc92-e89c49e201fd","originalAuthorName":"任强"}],"doi":"","fpage":"627","id":"89d91555-96e9-4836-b6cc-6c7fa989f10a","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"c13f01bd-fd81-4722-afa3-4b52bca5ac8e","keyword":"镍基合金G-3","originalKeyword":"镍基合金G-3"},{"id":"7f34bdd1-6a29-41e0-981a-7b7f6b40990a","keyword":"H2S/CO2","originalKeyword":"H2S/CO2"},{"id":"d0914018-0045-4d78-b1ea-5f3b03973f63","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"758e9f7c-1487-469a-9d90-5982a5bb37c1","keyword":"腐蚀影响因素","originalKeyword":"腐蚀影响因素"}],"language":"zh","publisherId":"clkxygc200904034","title":"G-3合金在高含H2S/CO2环境中的腐蚀电化学行为","volume":"27","year":"2009"},{"abstractinfo":"塔河12伴生气为高含H2S和CO2的腐蚀性湿气,腐蚀环境恶劣,在腐蚀环境分析与防护技术研究的基础上,通过耐蚀材质比选、缓蚀剂防护应用、腐蚀监测网络建立综合防腐蚀技术的实施,最大限度地降低了伴生气集输管道的腐蚀风险,为此类伴生气集输管道防腐蚀技术提供了技术借鉴.","authors":[{"authorName":"羊东明","id":"ec97514e-18ed-4229-a535-37525c0eb645","originalAuthorName":"羊东明"},{"authorName":"石鑫","id":"bea01e78-8d4d-4a63-9f44-51d2f0761e4b","originalAuthorName":"石鑫"},{"authorName":"李亚光","id":"7c7e013d-5959-43b4-becb-49620dc3d9d9","originalAuthorName":"李亚光"}],"doi":"","fpage":"545","id":"f1be35d2-2495-4876-b7c8-05ccfff024b3","issue":"6","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"c7d7a6e8-e54c-4bae-b3f8-f8b03800fe89","keyword":"伴生气管道","originalKeyword":"伴生气管道"},{"id":"d31de9ee-ad40-4895-91f4-0fa286fd522e","keyword":"硫化氢腐蚀","originalKeyword":"硫化氢腐蚀"},{"id":"5c1bdc27-b5a9-4225-a655-6cba47d5eb97","keyword":"二氧化碳腐蚀","originalKeyword":"二氧化碳腐蚀"},{"id":"2b972652-326b-4539-976a-466b81d50577","keyword":"综合防腐蚀技术","originalKeyword":"综合防腐蚀技术"}],"language":"zh","publisherId":"fsyfh201306024","title":"塔河12区高含H2S和CO2伴生气管道防腐蚀技术","volume":"34","year":"2013"},{"abstractinfo":"采用电位阶跃技术研究在H2S和CO2共存的近中性溶液中套管钢/溶液界面和反应过程.应用数学模型分析界面反应中氢吸附过程、负离子脱附过程和氢吸收过程的变化规律.当阶跃电位为50 mV,界面反应由氢吸附过程控制,当阶跃电位超过50 mV,界面反应由负离子脱附过程控制.研究显示,在含50% H2S(pH=5.9)环境中,加入CO2提高了界面负离子脱附、氢吸附和氢吸收反应速率.","authors":[{"authorName":"邓洪达","id":"7fa44dd8-2712-4789-8798-e04bb36a736f","originalAuthorName":"邓洪达"},{"authorName":"李春福","id":"14d14223-ec0a-4579-a158-fc4271ac9e8c","originalAuthorName":"李春福"},{"authorName":"曹献龙","id":"05e84d4d-ac01-410f-9d6d-a4c93e62c92e","originalAuthorName":"曹献龙"},{"authorName":"唐笑","id":"757f8d74-6d19-418a-9c03-855d98794b6d","originalAuthorName":"唐笑"}],"doi":"","fpage":"18","id":"80e25f79-1ab6-41bd-8bd9-87d672840225","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"ff9ae8c0-fc7c-42f2-bb9b-ad3b054fe70a","keyword":"套管钢","originalKeyword":"套管钢"},{"id":"5b8892e1-d8e0-4472-98b1-8d7ba3b7d6a7","keyword":"H2S","originalKeyword":"H2S"},{"id":"474579d2-7bd4-4b4b-b97a-6335acd894b2","keyword":"CO2","originalKeyword":"CO2"},{"id":"8388dc4b-93be-43b5-ab59-2b8d51a28262","keyword":"电位阶跃","originalKeyword":"电位阶跃"},{"id":"335bdc4e-383f-464e-81a6-149edcb06989","keyword":"脱附","originalKeyword":"脱附"},{"id":"42296780-5cc4-4d7c-88f3-1e35834eba63","keyword":"氢吸附","originalKeyword":"氢吸附"},{"id":"27c1dceb-3b34-46bc-820d-370c06571c9b","keyword":"氢吸收","originalKeyword":"氢吸收"}],"language":"zh","publisherId":"fsyfh201301005","title":"暂态技术研究高含H2S和CO2近中性溶液中套管钢的界面反应","volume":"34","year":"2013"},{"abstractinfo":" 对近年来某气田低含H2S、中含CO2气井在不同产水量和产出水矿化度下的井筒碳钢管柱的腐蚀情况进行了分类分析,通过理论和室内试验研究了影响油管腐蚀的主要参数条件,明确电化学腐蚀特征.发现导致油管严重腐蚀和局部穿孔的主因是高矿化度的地层产出水、复杂的井下环境参数和特定的H2S/CO2分压,为今后减缓和控制腐蚀提出了研究方向.","authors":[{"authorName":"曾亚勤李琼玮杨全安李明星何淼胡兴民","id":"a711e406-16b5-453f-9708-5ee672c67297","originalAuthorName":"曾亚勤李琼玮杨全安李明星何淼胡兴民"}],"categoryName":"|","doi":"","fpage":"257","id":"e1724423-180e-4601-be9d-c3a0f25cde3b","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"7a424e13-c1aa-400f-9f45-5bae09015f28","keyword":"电化学腐蚀","originalKeyword":"电化学腐蚀"},{"id":"9b9058c5-4af9-46c7-9053-8fb3dd3c075f","keyword":"gas well","originalKeyword":"gas well"},{"id":"f8dbaf4d-773e-4d13-a39f-efa68bd08170","keyword":"perforaction","originalKeyword":"perforaction"},{"id":"63afb887-6d53-411d-8a95-dbce825f7f4a","keyword":"high salinity","originalKeyword":"high salinity"},{"id":"78f4b311-2e96-427d-b2e2-7744ee48930c","keyword":"formation water","originalKeyword":"formation water"}],"language":"zh","publisherId":"1002-6495_2009_3_13","title":"含低H2S和中等CO2气井的电化学腐蚀问题研究","volume":"21","year":"2009"}],"totalpage":11516,"totalrecord":115154}