CHANG Ying
,
MENG Zhaohuan
,
YING Liang
,
LI Xiaodong
,
MA Ning
,
HU Ping
钢铁研究学报(英文版)
Based on the combination of materials science and mechanical engineering, hot press forming process of the vehicle high strength steels was analyzed. The hot forming process included: heating alloys rapidly to austenite microstructures, stamping and cooling timely, maintaining pressure and quenching. The results showed that most of austenite microstructure was changed into uniform martensite by the hot press forming while the samples were heated at 900 ℃ and quenched. The optimal tensile strength and yield strength were up to 1530 MPa and 1000 MPa, respectively, and the shape deformation reached about 23%. And springback defect did not happen in the samples.
关键词:
high strength steel
,
lightweight
,
hot forming
,
martensite
CHANG Ying
,
WANG Dapeng
,
LI Wei
,
PAN Wei
,
YU Xiaojun
,
QI Min
钢铁研究学报(英文版)
Rare earth permanent magnetic materials are typical electrical conductor, and their magnetic properties will decrease because of the eddy current effect, so it is difficult to keep them stable for a long enough time under a high frequency AC field. In the present study, as far as rare earth permanent magnets are concerned, for the first time, rare earth permanent magnets with strong electrical insulation and high magnetic performance have been obtained through experiments, and their properties are as follows: (1) Sm2TM17: Br=062 T, jHc=8037 kA/m, (BH)m=5897 kJ/m3, ρ=7 Ω·m; (2) NdFeB: Br=0485 T, jHc=76633 kA/m, (BH)m=3796 kJ/m3, ρ=9 Ω·m. The magnetic properties of Sm2TM17 and NdFeB are obviously higher than those of ferrite permanent magnet, and the electric insulating characteristics of Sm2TM17 and NdFeB applied have in fact been approximately the same as those of ferrite. Therefore, Sm2TM17 and NdFeB will possess the ability to take the place of ferrite under a certain high frequency AC electric field.
关键词:
Sm2TM17;NdFeB;electrical insulation;eddy current