欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

Corrosion Penetration and Crystal Structure of AA5022 in HCl Solution and Rare Earth Elements

A.A.El-Meligi

材料科学技术(英文)

Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (Ce3+) and their combination, at different temperatures. X-ray diffraction (XRD) was used to examine the surface structure before and after immersion, and secondary electron detector (SED) was operated to study surface morphology. In 1 mol/L HCl solution the corrosion penetration increased with increasing temperature and immersion time. The increase of La3+ concentrations up to 1000×10-6 g/L led to the decrease in the corrosion penetration, and the decrease in Ce3+ concentrations up to 50×10-6 g/L decreases the corrosion penetration of the alloy. Mix3 (combination of La3+ and Ce3+) dramatically reduced the corrosion penetration. This suggests that a synergistic effect exists between La3+ and Ce3+. The reaction kinetics both in absence and presence of La3+ and Ce3+ and their combination would follow a parabolic rate law. The XRD patterns revealed that the intensities of certain hkl phases are affected. The crystalline structure has not been deformed either before or after testing and there are no additional peaks except that of the as-received alloy. In the case of accelerating CP, the surface morphology shows that the roughness and voids of surface are increased.

关键词: Al-alloy , Corrosion , penetration , Crystal , s

Corrosion Behaviours of Copper Alloy in Solutions Containing Na2SO4 and NaCl with Different Concentrations

A.A.El-Meligi

材料科学技术(英文)

Potentiodynamic polarisation, potential-time measurements, X-ray diffraction (XRD) and infrared spectroscopy (IR) have been used to investigate the effect of different concentrations of Na2SO4 in the absence and presence of NaCl, on the corrosion of Cu-alloy. The electrochemical measurements showed that the increase of Na2SO4 concentration led to increase the corrosion current density of Cu alloy and vice versa. The presence of NaCl shifted the potential to more cathodic potential, which had a great influence on the protectiveness of the Cu oxide layer formed on the surface in presence of Na2SO4. The spectrometric measurements indicated the constituents of the film formed on the alloy surface were mainly Cu2O, in addition to the oxides, NiO and Fe2O3, which were traced by XRD analysis.

关键词: Cu-alloy , null , null , null , null , null

出版年份

刊物分类

相关作者

相关热词