欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

ION HEATING PROCESS DURING PLASMA IMMERSION ION IMPLANTATION

X.B. Tian , X.F. Wang , A.G. Liu , L.P. Wang , S. Y. Wang , B. Y. Tang and P. K. Chu 1)Advanced Welding Production & Technology National Key Laboratory , Harbin Institute of Technology , Harbin 150001 , China 2)Department of Physics & Materials Science , City University of Hong Kong , China

金属学报(英文版)

The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.

关键词: plasma immersion ion implantation , null , null

Effects of Treatment Temperature on the Microstructure and Magnetic Properties of Fe-N Thin Films

B.L. Li , H.M. Du , X.F. Wang , E.Y. Jiang

金属学报(英文版)

Fe-N thin films were fabricated on both 100Si and NaCl substrates by RF magnetron sputtering under low nitrogen partial pressure. The microstructure and magnetic properties of Fe-N thin films were investigated with the increase of the substrate temperature (Ts) and the annealing temperature (Ta). It is more difficult for nitrogen atoms to enter the Fe lattice under higher Ts above 150℃. The phase evolution is visible at higher Ta above 200℃. The phase transformation of α''-Fe16N2 occurred at 400℃. The change of crystal size with Ta was clearly visible from bright and dark field images. The clear high-resolution electron microscope (HREM) images of 110α, 111γ', 112α'', and 200α'' phases were observed. The interplanar distances from TEM and HREM match the calculated values very well. From the results of the vibrating sample magnetometer (VSM), the good magnetic properties of Fe-N films were obtained at 150℃ of Ts and 200℃ of Ta, respectively.

关键词: Fe-N thin film , null , null , null

出版年份

刊物分类

相关作者

相关热词