欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(4)
  • 图书()
  • 专利()
  • 新闻()

Numerical Simulation of Brazing TiC Cermet to Iron with TiZrNiCu Filler Metal

Lixia ZHANG , Jicai FENG

材料科学技术(英文)

The maximum thermal stress and stress concentration zones of iron/TiC cermet joint during cooling were studied in this paper. The results showed that the shear stress on iron/TiC cermet joint concentrates on the interface tip and the maximum shear stress appears on the left tip of iron/TiZrNiCu interface. Positive tensile stress on TiC cermet undersurface concentrates on both sides of TiC cermet and its value decreases during cooling. Negative tensile stress on TiC cermet undersurface concentrates on the center of TiC cermet and its value increases during cooling. Brazing temperature has little effect on the development and maximum thermal stress.

关键词: Numerical simulation , null , null , null

Prediction Models on Distribution of Inherent Strains in T Type Welding Structure

Peng HE , Jicai FENG , Jiecai HAN , Yiyu QIAN

材料科学技术(英文)

A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. The method of predicting maximum hardness Hv(y, z) and maximum inherent strain gmax is given. The model T.E.P-Tav-hardness calculation is proposed to predict distribution of inherent strains in T type welding structure. By T.E.P-Tav-hardness calculation, distribution of longitudinal inherent strains can be predicted in T type welding structure, and calculation and experimental results are consistent.

关键词: Inherent strain , null , null

Influence of Surface Condition on Expulsion in Spot Welding AZ31B Magnesium Alloy

Yarong WANG , Jicai FENG , Zhongdian ZHANG

材料科学技术(英文)

Experiments were carried out to study the influence of surface condition on expulsion during the spot welding of AZ31B Mg alloy. A general electrical contact resistance theory for conductive rough surfaces and the relation between maximum temperature Tm in the contact and voltage-drop V across interface of two surfaces were employed to understand the reason of expulsion in Mg alloy spot welding. The main reason of expulsion is that the high electrical contact resistance induced by large roughness of the surface and oxide film covered on the surface leads to local melting of metal in the interface of two surfaces, and liquid metal of the local area ejected from the specimen under electrode force forms expulsion.

关键词: Expulsion , null , null , null

Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with Cu-P Filler Metal

Peng HE , Jicai FENG , Heng ZHOU

材料科学技术(英文)

Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173~1273 K for 60~1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215~1225 K; brazing time is 250~300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interfacial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 kJ/mol and 0.0821 m2/s, respectively, and growth formula was y2=0.0821exp(-34421.59/T)t. Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed.

关键词: Brazed joints , null , null

出版年份

刊物分类

相关作者

相关热词