Mingzhen MA
,
Dayong CAI
,
Tianfu JING
材料科学技术(英文)
The microstructure of TiCp/2024 composite and the structure of interface between TiCp and Al are studied using SEM and TEM. The results show that the in-situ synthesized TiC particle has face-centered cubic structure (fcc). Meanwhile, particles are characterized as tiny and nearly globular. The orientation between TiC particles and Al matrix can be described as ((2) over bar(2) over bar0)(Al)//(02 (2) over bar)(Tic) and [(1) over bar 12](Al)//[011](TiC). Results of the mechanical property tests reveal that the ultimate strength (sigma (b)) and the yield strength (sigma (s)) of the composite are improved by 30% and 47% respectively, compared with the properties of 2024 matrix. In addition, the elongation (delta) value can still reach 4.3%. Thus TiCp/2024 composite has high comprehensive performance.
关键词:
Mingzhen MA
,
Dayong CAI
,
Tianhua WEI
材料科学技术(英文)
Direct reaction synthesis (DRS), based on the principle of self-propagating high-temperature synthesis (SHS), is a new method for preparing particulate metal matrix composites. TiCP/Al-4.5Cu-0.8Mg composites were fabricated by DRS. Particulate composites were fabricated with Ti carbide (TiC) particles, generally less than 1.0µm. The reacted, thermal extruded samples exhibit a homogeneous distribution of fine TiC particles in Al-4.5Cu-0.8Mg matrix. Mechanical property evaluation of the composites has revealed a very high tensile strength relative to the matrix alloy. Fractographic analysis indicates ductile failure.
关键词:
TiCP/Al-4.5Cu-0.8Mg composites
,
null
,
null
,
null