{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"氨碱法制碱中,为回收氨,氨冷却塔产生的冷凝氨液需经二次蒸氨工序,因此过程能耗高;循环回用的高含水率氨,降低了氨化工序中精盐水的浓度,最终限制了钠利用率的提高.本文采用精盐水作为吸收液,研究基于直接接触蒸馏原理的吸收氨回用技术.将模拟冷凝氨液中的氨转移到精盐水中而被吸收,同时抑制与氨传质同向的水传质过程,从而降低回用氨的含水率,节省水的汽化相变热.实验研究了吸收组件用聚偏氟乙烯(PVDF)中空纤维疏水丝内径ri和组件装填密度δ、吸收液与原料液进入组件时的温度差△T对吸收氨回用过程性能的影响.当ri为0.80 mm,δ为16.8%,△T为9℃时,氨通量为1.17 kg/(m2·h),水通量仅为0.04 kg/(m2· h),表明该技术具有可行性.","authors":[{"authorName":"孙伟","id":"7200476e-4413-4deb-83aa-a7a85126a3d7","originalAuthorName":"孙伟"},{"authorName":"高启君","id":"7201f8a9-861b-465d-b53b-7ec5d80e703e","originalAuthorName":"高启君"},{"authorName":"吕晓龙","id":"c144fab8-7ef8-4628-ae7d-834a1e5bafcf","originalAuthorName":"吕晓龙"},{"authorName":"陈华艳","id":"7f258268-4741-4622-88b6-09316f16c9a6","originalAuthorName":"陈华艳"},{"authorName":"武春瑞","id":"e6860a37-290a-4bf5-9ee6-180bcf003f42","originalAuthorName":"武春瑞"},{"authorName":"王暄","id":"ccd00310-623f-4759-8870-f2a75b7e5bb8","originalAuthorName":"王暄"},{"authorName":"贾悦","id":"6644c892-04f9-4e23-b554-3e8c2c58d4fb","originalAuthorName":"贾悦"}],"doi":"10.16159/j.cnki.issn1007-8924.2016.03.019","fpage":"118","id":"946c289c-6b1b-488f-b559-0f2b4179ea89","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"ed53c30c-6b87-4979-b92f-1942d0486dc9","keyword":"吸收","originalKeyword":"膜吸收"},{"id":"995b59db-938e-4167-91a4-03bbc3bf3729","keyword":"直接接触蒸馏","originalKeyword":"直接接触膜蒸馏"},{"id":"3c67f62b-565f-41a1-9142-d15339ec6ba0","keyword":"氨回用","originalKeyword":"氨回用"},{"id":"7191dce3-9f40-4a1b-bb94-330ac596eea0","keyword":"含水率","originalKeyword":"含水率"},{"id":"55ba2508-7608-4166-8820-049a474ce319","keyword":"氨碱法制碱","originalKeyword":"氨碱法制碱"}],"language":"zh","publisherId":"mkxyjs201603019","title":"氨碱法制碱中基于直接接触蒸馏原理的吸收氨回用技术","volume":"36","year":"2016"},{"abstractinfo":"综述近10多年来国内外发表的有关文献,分析了蒸馏过程的特点,评述了直接接触蒸馏过程传热传质机理的研究进展,包括模型的建立、温度极化、浓度极化、传热系数的确定、膜结构的影响、流体力学的影响;并分析了该过程传递机理的研究重点.","authors":[{"authorName":"马方伟","id":"b04e1738-7975-4c4b-b201-26716ace7bf2","originalAuthorName":"马方伟"},{"authorName":"赵之平","id":"16e86472-609e-40d7-bd23-1cde8b44a2b0","originalAuthorName":"赵之平"},{"authorName":"郭轶琼","id":"3bb219da-f13a-4c9b-815f-9e5f4c8a6a0c","originalAuthorName":"郭轶琼"},{"authorName":"孟文君","id":"ae7c5486-7fa0-4b08-9f67-938764920068","originalAuthorName":"孟文君"}],"doi":"10.3969/j.issn.1007-8924.2008.01.018","fpage":"86","id":"bd8ff9ef-5481-4c29-9466-6574177a4218","issue":"1","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"663b8ab7-bc7d-4a47-b7a5-5f603685c3f7","keyword":"蒸馏","originalKeyword":"膜蒸馏"},{"id":"92cc71ba-cf44-4a12-84b9-a4da24fa9f60","keyword":"传热机理","originalKeyword":"传热机理"},{"id":"366bb3e1-e86b-4ee8-a08c-22858e70030b","keyword":"传质机理","originalKeyword":"传质机理"},{"id":"96c66fff-cf48-41e2-aa4a-b8e626b13a75","keyword":"温度极化","originalKeyword":"温度极化"},{"id":"1821334f-673f-495d-af4a-debaaf373f2f","keyword":"浓度极化","originalKeyword":"浓度极化"}],"language":"zh","publisherId":"mkxyjs200801018","title":"蒸馏过程传递机理研究进展(1)直接接触蒸馏","volume":"28","year":"2008"},{"abstractinfo":"建立了直接接触蒸馏(DCMD)的传递模型,对蒸馏过程中通量和热效率等影响因素进行了详细研究.实验探索了蒸馏热侧进口温度、冷侧和热侧流量对过程的影响,为通量和热效率优化提供依据.结果表明,热侧进口温度升高、热侧和冷侧流量增加均有助于通量增加;热侧进口温度升高、热侧流量增加和冷侧流量减小均有利于提高热效率.通量取决于传质推动力,即蒸汽压差;热效率取决于平均面温度,凡是有利于面温度提高的操作条件都会增大热效率.","authors":[{"authorName":"王兆春","id":"cc70a742-7b4d-41a8-a2e0-0a636089bebd","originalAuthorName":"王兆春"},{"authorName":"于超","id":"839c9824-5609-434d-9aa3-82a3a22c7bc8","originalAuthorName":"于超"},{"authorName":"彭跃莲","id":"a62cc10a-4481-4dd5-805c-24dac2c187ca","originalAuthorName":"彭跃莲"},{"authorName":"李哲浩","id":"0c6296cf-c2bf-4ad8-b99f-e15007d6375f","originalAuthorName":"李哲浩"}],"doi":"10.16159/j.cnki.issn1007-8924.2016.04.011","fpage":"67","id":"fb4bf7a9-e48b-4776-83a5-7f8523893c79","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"344e1085-5990-432e-8d33-d11d1ffd6471","keyword":"直接接触蒸馏","originalKeyword":"直接接触式膜蒸馏"},{"id":"4e6944bf-0690-4435-a30d-55828879f335","keyword":"传递模型","originalKeyword":"传递模型"},{"id":"42cc3d7c-6e51-4109-b899-38613a1c2b7d","keyword":"通量","originalKeyword":"膜通量"},{"id":"b6f3669d-8dc6-4457-975e-0f461361fa17","keyword":"热效率","originalKeyword":"热效率"}],"language":"zh","publisherId":"mkxyjs201604011","title":"直接接触蒸馏过程的模拟和实验研究","volume":"36","year":"2016"},{"abstractinfo":"蒸馏是一种低能耗、高效率的海水淡化技术.文章借鉴了制备压力推动材料的思路,采用非对称、孔结构高度连通的亲水聚醚砜,通过CF4等离子体表面改性,将亲水改性为疏水材料,并应用于直接接触蒸馏(DCMD)过程.对的结构,接触角和DCMD性能进行了表征.结果显示,改性后PES表面水接触角达120°.以4% NaC1水溶液为原料,蒸馏中水通量达44 kg/(m2·h)(盐水温度72.6℃,冷水侧温度15℃),对盐的截留率达99.96%.实验表明,孔连通性较好的小孔径聚醚砜具有较好的蒸馏性能,可能成为具有商业用途的材料.","authors":[{"authorName":"魏星","id":"eca1ce1b-49c0-4ce5-bed4-3a7649809d29","originalAuthorName":"魏星"},{"authorName":"李雪梅","id":"09c4a81f-c2d5-43fa-a4ef-4428fde310c2","originalAuthorName":"李雪梅"},{"authorName":"何本桥","id":"6bb10472-2f3a-4d7f-a55a-02879a863c87","originalAuthorName":"何本桥"},{"authorName":"殷勇","id":"7827fc82-194b-4a09-96bb-223dd9e9ecdf","originalAuthorName":"殷勇"},{"authorName":"何涛","id":"1a716b15-ca0b-4c77-b7b3-5e0429286a29","originalAuthorName":"何涛"}],"doi":"10.3969/j.issn.1007-8924.2011.06.010","fpage":"50","id":"073a13f8-2fa9-45ed-829f-fd48fde517cb","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"c204496a-6d2c-47d0-96a1-494f138f54ab","keyword":"蒸馏","originalKeyword":"膜蒸馏"},{"id":"1ab83d2c-11cc-41bf-b0fd-e5bd6c1b4f0b","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"cbe9cae1-43af-4ea4-8c24-b13840341cdc","keyword":"疏水","originalKeyword":"疏水"},{"id":"bd84908a-2189-4734-ac54-fe08dc24325a","keyword":"聚醚砜","originalKeyword":"聚醚砜"},{"id":"3ed432df-5729-47b5-a52d-aab9f1e4964b","keyword":"四氟化碳","originalKeyword":"四氟化碳"}],"language":"zh","publisherId":"mkxyjs201106010","title":"低温CF4等离子体改性亲水聚醚砜及其在直接接触蒸馏中的应用","volume":"31","year":"2011"},{"abstractinfo":"冰浆具有良好的流动性,有着广泛的用途.气体直接接触式换热具有换热系数高的优点,由于气流的速度可以更高,换热也就可以更充分,换热性能更好.本文利用氮气作为直接接触制冰系统的低温介质进行了制冰实验,分析了流量、流速、温度等因素对系统换热性能和冰堵的影响.","authors":[{"authorName":"张学军","id":"89ba69b0-6adb-49d7-adee-5960d0b76f0c","originalAuthorName":"张学军"},{"authorName":"田新建","id":"59c0bd15-4633-4eff-9878-820b30186165","originalAuthorName":"田新建"},{"authorName":"郑克晴","id":"584106a9-ea28-41fa-823f-ed3a2eda8dfe","originalAuthorName":"郑克晴"},{"authorName":"邱利民","id":"1e41c936-ff99-4755-ae36-35f9a2635a48","originalAuthorName":"邱利民"}],"doi":"","fpage":"1997","id":"0fce8d32-3a6b-4a73-b1df-3b7c86c9f4b1","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a75f7127-099c-4d76-af5b-2f90e2e77b66","keyword":"直接接触式","originalKeyword":"直接接触式"},{"id":"efae9390-df88-44a8-93d5-40723d4fa4fc","keyword":"冰浆","originalKeyword":"冰浆"},{"id":"981d23b4-19c9-4072-819a-b32af2e5992a","keyword":"气体","originalKeyword":"气体"}],"language":"zh","publisherId":"gcrwlxb201012005","title":"气体直接接触式制取冰浆实验研究","volume":"31","year":"2010"},{"abstractinfo":"蒸馏的疏水性是控制出水品质和过程运行稳定性的关键之一.本文系统总结了本课题组采用CF4等离子体对亲水、疏水材料进行疏水改性用于蒸馏的研究进展,描述了CF4等离子体的改性机理及疏水改性直接接触蒸馏过程的性能等.对超疏水改性对性能影响的机理进行了探索,发现(超)疏水改性可提高蒸馏过程的有效蒸发面积,从而提高蒸馏过程的热效率和通量,为制备高性能新型蒸馏材料提供了新思路.","authors":[{"authorName":"杨迟","id":"2fad5187-4c95-4dd8-abe4-4950309e279b","originalAuthorName":"杨迟"},{"authorName":"谢应明","id":"c32460e0-cf2b-4180-b476-85b0be6ada98","originalAuthorName":"谢应明"},{"authorName":"殷勇","id":"80bf68df-de5a-40c9-acc8-a94367961825","originalAuthorName":"殷勇"},{"authorName":"田苗苗","id":"bd1431d2-64d8-417a-99c2-7c4bec7d12a0","originalAuthorName":"田苗苗"},{"authorName":"宋健峰","id":"29690417-38b5-4adb-a518-998b23016892","originalAuthorName":"宋健峰"},{"authorName":"李春霞","id":"0e4677eb-cc9c-45fd-a303-fef281de5c21","originalAuthorName":"李春霞"},{"authorName":"孔丁峰","id":"2e56730a-4fb2-4e66-8c9c-43edf7336881","originalAuthorName":"孔丁峰"},{"authorName":"李雪梅","id":"8a01c5bd-2234-4f0b-814f-9cb65abc04da","originalAuthorName":"李雪梅"},{"authorName":"何涛","id":"10389185-f139-4887-ba37-bfe3a3da946c","originalAuthorName":"何涛"}],"doi":"","fpage":"4","id":"dd6f987f-5056-4381-a019-1f1370bd92e8","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"f2939bb1-694e-4162-ac0b-edec9e74a3e4","keyword":"蒸馏","originalKeyword":"膜蒸馏"},{"id":"bfde8da6-576c-403b-b756-c1a4e83fff6c","keyword":"等离子体改性","originalKeyword":"等离子体改性"},{"id":"8f9b000b-5f64-443c-bc6e-46600298b7e4","keyword":"超疏水","originalKeyword":"超疏水"},{"id":"084ae9e6-6cbc-48e5-ac4e-c0c32735137a","keyword":"通量","originalKeyword":"通量"}],"language":"zh","publisherId":"mkxyjs201405002","title":"CF4等离子体改性超疏水蒸馏材料","volume":"34","year":"2014"},{"abstractinfo":"通过实验研究了矩形通道内蒸汽-空气混合气体与过冷水的直接接触凝结过程.通过可视化窗口,利用高速摄像机发现了蒸汽质量流率150~400 kg/(m2s),水质量流率6000~8000 kg/(m2s),水温30℃C条件下的三种纯蒸汽凝结流型:泡状流、振荡射流和稳定射流.研究了空气质量分数对凝结流型、壁面温度分布和压力分布的影响,结果表明:随着空气含量的增加,蒸汽在汽液相界面上的凝结变得困难,泡状流和振荡射流的汽液相界面明显变长,稳定射流则变化不大,汽液混合层的厚度明显增加,蒸汽区尾部聚集大量的气泡.此外,随着空气含量的增加,上壁面的温度降低,压力升高,下壁面的温度和压力均升高,且压力峰值点远离蒸汽喷嘴出口,说明汽液相界面变长.","authors":[{"authorName":"杨小平","id":"264177da-4aef-456c-ac32-65ba41ec9857","originalAuthorName":"杨小平"},{"authorName":"陈旖","id":"5428d1e3-241b-4449-b5d0-d92d3fe441c2","originalAuthorName":"陈旖"},{"authorName":"李涛","id":"c3cdf87f-693e-41e8-98ea-129b2476ad78","originalAuthorName":"李涛"},{"authorName":"宗潇","id":"6e8e7650-2bae-49bc-95cf-6f096f785635","originalAuthorName":"宗潇"},{"authorName":"刘继平","id":"5a8c2ff8-ab6e-49b1-8fe2-a6e8bcc63621","originalAuthorName":"刘继平"},{"authorName":"严俊杰","id":"2ccbee36-693a-4dd1-9059-14d6ca3cb3dc","originalAuthorName":"严俊杰"}],"doi":"","fpage":"2493","id":"d2c5d59f-bfca-48a5-8c4a-d0c688f787a0","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1085e578-0ae6-4571-a8ee-bab01b43725a","keyword":"蒸汽-空气混合气体","originalKeyword":"蒸汽-空气混合气体"},{"id":"900c94d3-0142-41ff-aaed-b56d739211a0","keyword":"直接接触凝结","originalKeyword":"直接接触凝结"},{"id":"d8af8b04-9d6c-4123-841f-55c76244a06b","keyword":"凝结流型","originalKeyword":"凝结流型"},{"id":"f469e52b-3b85-4fdf-b3cf-5b24818d9a6d","keyword":"温度分布","originalKeyword":"温度分布"},{"id":"272779d2-a65f-4a1c-9363-b17e023ee654","keyword":"压力分布","originalKeyword":"压力分布"}],"language":"zh","publisherId":"gcrwlxb201511038","title":"蒸汽空气混合物与过冷水直接接触凝结研究","volume":"36","year":"2015"},{"abstractinfo":"为考察铝土矿生物浸出脱硅的机制,比较了硅酸盐细菌JY03在细菌-矿物接触/非接触模式下与铝土矿的作用,分析浸出过程中铝土矿表面形成的生物与钝化对溶硅的影响。结果表明,在细菌浸出的前期(0~6 d),铝土矿表面生物与钝化还未形成,Al与Si的溶出主要受间接接触模式的影响;在6~12 d内,铝土矿表面的生物逐渐显现,Si 的溶出速率明显较非接触模式快,Si 的溶出主要受接触模式的影响,12d后,浸出液中 SiO2的浓度高于非接触模式17mg/L左右;在8~12d,Al2 O3沉淀产生,接触模式下Al的溶出速率明显变缓,非接触模式下明显下降;浸矿12d 后,Al2 O3絮凝沉淀在铝土矿表面形成钝化,浸出液中 Al2 O3浓度显著下降,SiO2的浓度达到最大值并趋于稳定。因此可以认为,生物的形成有利于细菌浸矿溶硅,钝化则抑制Al与Si的溶出。","authors":[{"authorName":"张贤珍","id":"ca20dd08-68a3-43c6-8f86-b6645293db65","originalAuthorName":"张贤珍"},{"authorName":"林海","id":"c2fcf7d6-116a-404c-b873-fb0bc2c5c4c4","originalAuthorName":"林海"},{"authorName":"孙德四","id":"17125218-100c-404f-bbb6-b4b3497ad898","originalAuthorName":"孙德四"}],"doi":"10.3969/j.issn.1001-9731.2013.17.005","fpage":"2460","id":"b656dd99-2f91-43ed-8bbf-133a9b259875","issue":"17","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"74f58cd8-6793-442a-82f0-194f9587a481","keyword":"铝土矿","originalKeyword":"铝土矿"},{"id":"38bab61b-e886-498b-ab5f-517bb71daccf","keyword":"硅酸盐细菌","originalKeyword":"硅酸盐细菌"},{"id":"6d299187-7681-475b-aaff-065ce9954ca4","keyword":"生物","originalKeyword":"生物膜"},{"id":"6070b1ae-eebb-4f97-8d56-aec661416317","keyword":"钝化","originalKeyword":"钝化膜"},{"id":"5693ab91-ba9b-462a-8885-2d4be1870065","keyword":"脱硅","originalKeyword":"脱硅"}],"language":"zh","publisherId":"gncl201317005","title":"直接/间接接触模式下1株硅酸盐细菌铝土矿脱硅研究","volume":"","year":"2013"},{"abstractinfo":"采用聚偏氟乙烯(PVDF)中空纤维疏水微孔,以质量分数3.5%NaCl水溶液为模拟海水测试液,进行蒸馏脱盐实验.比较了真空(VMD)、气扫式(SGMD)和直接接触蒸馏(DCMD)过程的脱盐性能,考察了料液温度、流速、浓度以及冷侧冷凝条件等操作条件对过程性能的影响.结果表明:VMD过程的产水通量最高,达到21.8 L/(m2·h);DCMD次之,SGMD最小.三种MD过程的渗透通量均随料液温度的升高而增大,随料液浓度的增加而降低;SG-MD和VMD过程通量分别随冷侧气体流速和真空度增加而提高,而DCMD过程通量则几乎不随冷却水流速变化而改变.SGMD、DCMD和VMD过程的脱盐率分别为99.97%、99.98%和99.99%,几乎不随操作条件而改变.","authors":[{"authorName":"赵晶","id":"a0351577-50f7-4423-b49b-b46357944efd","originalAuthorName":"赵晶"},{"authorName":"武春瑞","id":"6e213f5a-ccba-4876-ae0b-fe1acdb6db51","originalAuthorName":"武春瑞"},{"authorName":"吕晓龙","id":"6392c1b1-045e-4c9d-b798-7d801672384e","originalAuthorName":"吕晓龙"}],"doi":"10.3969/j.issn.1007-8924.2009.01.017","fpage":"83","id":"64aaa3e3-e34a-4563-b226-7c8400451469","issue":"1","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"437cac06-d477-4011-be81-943942113618","keyword":"蒸馏","originalKeyword":"膜蒸馏"},{"id":"837965b0-c58d-4acb-803f-5c9f86a66475","keyword":"海水淡化","originalKeyword":"海水淡化"},{"id":"b602bc19-ad7b-4124-8f7a-62f97314e0e5","keyword":"聚偏氟乙烯","originalKeyword":"聚偏氟乙烯"},{"id":"ef570c1d-0ae3-4351-87d4-c18b736bfeb8","keyword":"中空纤维疏水","originalKeyword":"中空纤维疏水膜"}],"language":"zh","publisherId":"mkxyjs200901017","title":"蒸馏海水淡化过程研究:三种蒸馏过程的比较","volume":"29","year":"2009"},{"abstractinfo":"讨论了蒸馏涉及的材料特性.提出水阻力概念,认为疏水材料结构的优化与蒸馏工艺有关.提出鼓泡蒸馏方法,在热流体中鼓入空气气泡,由气液两相流效应来强化热流体的扰动.提出透气蒸馏方法,通过气体的吹扫夹带作用,使孔内水蒸气的传质由低效的扩散转为高效的对流机理.提出曝气蒸发方法,利用不同温度的空气吸湿原理进行曝气.将蒸馏过程与化学除硬度、超滤耦合,可除去结垢性钙镁离子;将蒸馏过程与气浮絮凝过程耦合,可除去有机污染物,实现高倍率浓缩.提出多效蒸馏方法,组件兼有蒸发与换热功能,使蒸馏过程中的水蒸气冷凝与原水加热过程耦合,可以实现低成本的蒸馏过程.","authors":[{"authorName":"吕晓龙","id":"fb91429e-d6ca-4d23-8ef9-d9b386715f01","originalAuthorName":"吕晓龙"}],"doi":"10.3969/j.issn.1007-8924.2010.03.001","fpage":"1","id":"004a8d30-8801-4348-bd11-9827c5154252","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"4c413c64-beda-4736-8ec8-aca98346ce4f","keyword":"蒸馏","originalKeyword":"膜蒸馏"},{"id":"686b8a61-4017-4f73-9d25-018804d41fe7","keyword":"疏水","originalKeyword":"疏水膜"},{"id":"2cb63d0d-0de8-4f58-a53a-e21ee6c814da","keyword":"超疏水性","originalKeyword":"超疏水性"},{"id":"a2b063f1-b147-4a9d-b3f8-4d4b2bc05ec0","keyword":"水阻力","originalKeyword":"水膜阻力"},{"id":"1658e2d7-05f9-4b0c-a4e8-81e74cf92498","keyword":"过程","originalKeyword":"膜过程"},{"id":"a482eca9-709b-411e-b8e7-b701a32c22e8","keyword":"工艺耦合","originalKeyword":"工艺耦合"}],"language":"zh","publisherId":"mkxyjs201003001","title":"蒸馏过程探讨","volume":"30","year":"2010"}],"totalpage":3014,"totalrecord":30135}