F.S.Liu
,
J.L.Xu
,
C.G.Zhou
,
S.K.Gong
,
H.B.Xu
金属学报(英文版)
The halide-activated pack cementation method is utilized to codeposit aluminum and silicon on Mo substrate. Emphasis is placed on the microstructure and elevated-temperature oxidation resistance of coatings. The results show that hexagonal Mo (Si, Al)2 as a main phase and a little amount of the lower disilicide Mo3Si3 was formed on Mo substrate through the halide-activated pack cementation method. The resultant Si-Al coating on Mo substrate exhibits excellent cyclic oxidation resistance. The excellent cyclic oxidation resistance of the coatings is attributed to the formation of alumina on the coatings during the oxidation.
关键词:
Mo(Si
,
null
,
null
,
null
J.S.Yu
,
C.G.Zhou
,
H.B.Xu
金属学报(英文版)
The oxidations of low pressure plasma sprayed (LPPS) NiCrAlY coating on nickelbase superalloy were studied at 1050C in flows of O2, and mixture of O2 and 5%H2 Ounder atmospheric pressure. Oxide formed on the surface of LPPS NiCrAlY coatingafter oxidation at 1050℃ in pure O2 consisted of NiCr2 O4, whereas oxide formed onthe surface of LPPS NiCrAlY coating after oxidation at 1000℃ in a mixture of O2 and5%H2 O is mainly composed of NiO. The effect of water vapor on the characteristicsof the oxide scale is attributed to the increase in Ni cation transport.
关键词:
oxidation
,
null
,
null