欢迎登录材料期刊网
黄文生 , 陈功 , 成旭 , 朱锡芳
表面技术 doi:10.16490/j.cnki.issn.1001-3660.2015.02.024
目的:实现锂电池薄膜表面缺陷特征的有效提取。方法采用稀疏分解算法实现表面去噪,即通过选取合适的原子函数,在过完备字典中对含有点噪声、高斯噪声、椒盐噪声和加乘噪声背景下的缺陷图像进行稀疏分解迭代,通过观察法得到终止迭代值作为经验值,并将该经验值用于特定噪声背景下的稀疏分解终止迭代条件,得到去噪后的缺陷图像。最后将该方法与中值滤波技术进行比较。结果稀疏分解的去噪性能远优于中值滤波,对锂电池薄膜缺陷有很好的还原性。结论稀疏分解算法能够较好地去除锂电池薄膜图像中的噪声,从而识别出锂电池薄膜缺陷。
关键词: 稀疏分解 , 锂电池薄膜 , 缺陷图像 , 中值滤波