{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":3,"startPagecode":1},"records":[{"abstractinfo":"钛及钛合金具有优良的比强度和耐蚀性,在航天航空及石油化工行业中起着重要作用.钎焊作为一种精密成型的焊接方法,在形状复杂和薄壁零件连接中获得广泛应用.本文介绍了钛合金用的钛基钎焊料的发展现状,重点评价了钛基钎料钎焊后组织与力学性能的关系,以及钛基钎料的高温力学性能、耐蚀性以及疲劳性能等.提出了钛基钎焊料仍存在的问题和发展方向.","authors":[{"authorName":"王鑫","id":"485f12d8-38e8-4154-8194-c268c268c14c","originalAuthorName":"王鑫"},{"authorName":"祁炎","id":"ee010614-992a-4d5e-96d5-e714f74e919a","originalAuthorName":"祁炎"},{"authorName":"张羊换","id":"ca6beb49-09ee-4251-9cd4-f8bda7b5876e","originalAuthorName":"张羊换"},{"authorName":"董小平","id":"b89c1e31-d516-4efd-a2a5-823593c0884d","originalAuthorName":"董小平"},{"authorName":"冯猛","id":"763a9f3e-b328-4111-b78c-bcd50e0198e4","originalAuthorName":"冯猛"},{"authorName":"王新林","id":"14562f36-d72f-4558-96a7-c4f5dd5e5b7c","originalAuthorName":"王新林"}],"doi":"10.3969/j.issn.1005-8192.2005.06.010","fpage":"41","id":"08f36e88-8b91-4fea-aa3f-2940aefc5ddf","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"292bde71-579c-4891-979c-78936c248904","keyword":"钎焊","originalKeyword":"钎焊"},{"id":"2c4ae0f3-c27a-4ab0-b912-3c3b02f5c1e4","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"fcf85f66-8cf5-442d-9e9d-483a7e448ac3","keyword":"钛基钎焊料","originalKeyword":"钛基钎焊料"},{"id":"19d91c47-ffc6-42c7-a0bc-67c83298b296","keyword":"非晶","originalKeyword":"非晶"}],"language":"zh","publisherId":"jsgncl200506010","title":"钛合金用钛基焊料的现状及发展","volume":"12","year":"2005"},{"abstractinfo":"用铸造及快淬工艺制备了La-Mg-Ni系(PuNi3型)贮氢合金La2Mg(Ni0.85Co0.15)9Bx(x=0,0.05,0.1,0.15,0.2),分析测试了铸态及快淬态合金的微观结构与电化学容量,研究了硼及快淬工艺对合金微观结构及电化学容量的影响.结果表明,铸态合金具有多相结构,包括(La,Mg)Ni3相(PuNi3型)、LaNi5相,一定量的LaNi2相和微量的Ni2B相,经快淬处理后Ni2B相消失.硼的加入对铸态及快淬态合金的容量产生不同的影响,铸态合金的容量随硼含量的增加而单调下降,而快淬态合金的容量随硼含量的增加有一极大值.快淬处理对含硼及不含硼合金的容量也有不同的影响,随淬速的增加,不含硼合金的容量单调下降,而含硼合金的容量可以获得一个极大值.","authors":[{"authorName":"张羊换","id":"9297bc0d-7490-4d7d-b83d-66d7edb3f5a4","originalAuthorName":"张羊换"},{"authorName":"董小平","id":"2b5260aa-2b5d-4ddc-a003-7e1538cbc5b2","originalAuthorName":"董小平"},{"authorName":"郭世海","id":"1f2414bb-3ba6-451f-8959-9122d10051cb","originalAuthorName":"郭世海"},{"authorName":"冯猛","id":"3bea9077-108c-4eb8-8a06-70d57e9a5267","originalAuthorName":"冯猛"},{"authorName":"任江远","id":"e47c4f67-c2da-4024-aec5-a4926f997210","originalAuthorName":"任江远"},{"authorName":"王新林","id":"2ce66034-7ac4-416c-bf97-73f2e5255446","originalAuthorName":"王新林"}],"doi":"","fpage":"500","id":"0e3ab481-8aec-4862-8dda-083bc8d42311","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"91607dc6-fd94-421a-9402-62445a3a07e9","keyword":"硼含量","originalKeyword":"硼含量"},{"id":"3ca0eabd-ee4f-4f88-bda3-ba8eca7cc223","keyword":"快淬","originalKeyword":"快淬"},{"id":"49ca91d0-0942-40d6-a2f4-716bd2d5b5b4","keyword":"La-Mg-Ni系贮氢合金","originalKeyword":"La-Mg-Ni系贮氢合金"},{"id":"24fa1ba6-fb98-4044-a61d-2810abbc5a58","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"ed9345a5-7538-483d-b6dc-56a2350ed4c3","keyword":"电化学容量","originalKeyword":"电化学容量"}],"language":"zh","publisherId":"gncl200603047","title":"铸态及快淬态La2Mg(Ni0.85Co0.15)9Bx(x=O~O.2)贮氢合金的微观结构与电化学容量","volume":"37","year":"2006"},{"abstractinfo":"纳米碳管是一种性能优异的新型功能材料.利用循环失效后的AB5型贮氢合金电极材料作为反应催化剂、乙炔气体作为原料气体通过CVD法制备出多壁纳米碳管,研究了经过破碎、清洗、氧化处理后的失效AB5型贮氢合金电极材料在合成纳米碳管中的催化性能,讨论了不同氧化温度处理催化剂对纳米碳管产率、形貌和结构稳定性的影响.结果表明,氧化处理温度对催化剂的催化效能有明显的影响,600℃为最佳氧化处理温度.以氧化处理后的失效AB5型贮氢合金电极材料作为催化剂制备碳纳米管,方法简单易行,为废旧镍氢电池负极材料的回收再利用提供了一种新的思路.","authors":[{"authorName":"冯猛","id":"1961ed10-a495-4ae6-b7e0-f949187de55a","originalAuthorName":"冯猛"},{"authorName":"卢凤双","id":"7998ba7e-8631-47d4-9bb2-9535e851195c","originalAuthorName":"卢凤双"},{"authorName":"张羊换","id":"44689810-6698-4fad-8153-d6ee3ce7f163","originalAuthorName":"张羊换"},{"authorName":"王新林","id":"f0848add-3d31-4b2e-ae53-38f27bba8180","originalAuthorName":"王新林"}],"doi":"","fpage":"156","id":"3719b0c7-cf81-417c-bb07-1ac5e25c70b9","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"97cd2736-9362-489c-ae48-a2adf0a1d169","keyword":"纳米碳管","originalKeyword":"纳米碳管"},{"id":"03e77cc9-006e-4b4d-85eb-ef52e5d3cb91","keyword":"贮氢合金电极材料","originalKeyword":"贮氢合金电极材料"},{"id":"672522d6-f4ed-4e77-b60f-b418b0ecd16d","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"90ab41c3-f65f-43af-a794-3554dda4bbc4","keyword":"CVD法","originalKeyword":"CVD法"}],"language":"zh","publisherId":"cldb2009z1045","title":"失效AB5型贮氢合金电极材料在制备纳米碳管中的应用","volume":"23","year":"2009"},{"abstractinfo":"铸态及快淬态La2Mg(Ni0 85Co0.15)9Cr01贮氢电极合金主要由(La,Mg)Ni3相(PuNi 3型结构),LaNi5相以及少量的LaNi2相组成,各相的含量与淬速有关.与铸态合金相比较,快淬态合金放电平台电压降低,快淬使合金的循环寿命都有不同程度的提高.铸态和快淬态合金均具有良好的活化性能.","authors":[{"authorName":"董小平","id":"18b43dc6-9973-4bb8-956a-909c22b4388b","originalAuthorName":"董小平"},{"authorName":"张羊换","id":"6975218b-e99e-44cb-af60-e9cf6b767dc1","originalAuthorName":"张羊换"},{"authorName":"冯猛","id":"f7531e6c-c118-451b-b1b6-f55780603816","originalAuthorName":"冯猛"},{"authorName":"王国清","id":"aa4a3077-7ba8-44ae-805a-25094497f209","originalAuthorName":"王国清"},{"authorName":"王新林","id":"9159a3e4-208a-4cbb-bf31-2aceb06f9b20","originalAuthorName":"王新林"}],"doi":"","fpage":"124","id":"3a91ca55-388d-46d0-93cf-51629be409ee","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"37531ffc-74c4-4d8c-8f41-c6ebd3286532","keyword":"La-Mg-Ni系","originalKeyword":"La-Mg-Ni系"},{"id":"2058ab70-ec6e-4b8f-9859-01ec3c4d4a0d","keyword":"贮氢电极合金","originalKeyword":"贮氢电极合金"},{"id":"686a8b9d-0ac1-47f1-bc66-560ef24a026d","keyword":"快淬工艺","originalKeyword":"快淬工艺"},{"id":"81c50464-0b86-4a3a-9e9e-e58e854a6174","keyword":"结构特性","originalKeyword":"结构特性"},{"id":"433b9fe3-ce11-42b3-9a9f-1dd6d6552f69","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"cldb200504035","title":"快淬La-Mg-Ni系贮氢电极合金的结构与电化学性能","volume":"19","year":"2005"},{"abstractinfo":"本文介绍了应用真空快淬技术制备贮氢合金.应用真空快淬技术可使合金在极大的过冷度下凝固,经过真空快淬处理后贮氢合金获得具有微晶、纳米晶、非晶特殊微观结构,因而表现出良好的电化学性能.介绍了真空快淬技术在稀土镍系AB5型,AB2型Laves相,稀土镁基贮氢合金等制备中的应用现状,评价了真空快淬技术在制备新型贮氢合金中的作用.","authors":[{"authorName":"董小平","id":"9f0d0bbd-01fc-42fa-a8ba-e276d63511e9","originalAuthorName":"董小平"},{"authorName":"张羊换","id":"8bfd4e86-5bb4-4ed1-bd4e-5feff089ad56","originalAuthorName":"张羊换"},{"authorName":"冯猛","id":"4705b831-e872-49c9-8ac8-cfd331c16fca","originalAuthorName":"冯猛"},{"authorName":"王国清","id":"620bd3ce-a9db-4785-b5f2-8e195d9be98b","originalAuthorName":"王国清"},{"authorName":"任江远","id":"90d247c0-8bd0-4f8b-8a3c-742afe092e07","originalAuthorName":"任江远"},{"authorName":"王新林","id":"9021514e-670b-4736-8e3b-6d56b1575572","originalAuthorName":"王新林"}],"doi":"10.3969/j.issn.1005-8192.2005.03.009","fpage":"35","id":"6d842e2a-e983-421a-8838-696e73784bc6","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"269256a5-7635-4855-9efe-e87b13e60915","keyword":"真空快淬技术","originalKeyword":"真空快淬技术"},{"id":"addd55e3-954f-48d7-b287-05d52fb0c2a7","keyword":"贮氢合金","originalKeyword":"贮氢合金"},{"id":"b1638237-7d42-4e3e-a9f2-a218de919b01","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"a120b852-ffd7-4b2d-936a-08d8379c66c7","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"jsgncl200503009","title":"真空快淬技术制备贮氢合金的新近进展","volume":"12","year":"2005"},{"abstractinfo":"通过混炼和压片工艺制备了非晶态合金填充的氯化聚乙烯电磁屏蔽橡胶.通过SEM、XRD、屏蔽效能测试和拉伸试验,研究了填充比对电磁屏蔽效能和拉伸强度的影响.结果表明,材料在10 MHz~100 MHz频率范围内的屏蔽效能最大,可以达到28 dB,具有一定的屏蔽效果.体系中可以形成一定的导电通路,但没有达到体系的阈值.非晶态合金的加入可以提高屏蔽橡胶的低频吸收损耗,屏蔽效能随频率升高呈下降趋势.非晶态合金对橡胶基体的拉伸强度有一定影响.","authors":[{"authorName":"曾敏","id":"db9d348a-b13f-4a74-8f38-a0486c2884a8","originalAuthorName":"曾敏"},{"authorName":"冯猛","id":"aae4136a-db2a-4800-97a6-b5084e0f370f","originalAuthorName":"冯猛"},{"authorName":"伍江涛","id":"66dfb465-0c65-4735-a9d6-99b30f84c199","originalAuthorName":"伍江涛"},{"authorName":"张羊换","id":"4e0b4a81-c52e-467e-ac6d-a796d3ebc9a3","originalAuthorName":"张羊换"},{"authorName":"王新林","id":"d76de940-6093-4f25-a14b-947ac5228d97","originalAuthorName":"王新林"}],"doi":"","fpage":"12","id":"784b31a2-48cb-47a3-9793-f3c369b42bca","issue":"5","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"f59c44c8-04b5-4ee2-b289-ec423347b15d","keyword":"非晶态合金","originalKeyword":"非晶态合金"},{"id":"83de1cfb-8214-407f-aa12-d0090fdba67f","keyword":"电磁屏蔽","originalKeyword":"电磁屏蔽"},{"id":"6639c766-aeab-4dbf-935e-1e1e4183b7db","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"}],"language":"zh","publisherId":"jsgncl200905004","title":"非晶态合金填充氯化聚乙烯的电磁屏蔽性能研究","volume":"16","year":"2009"},{"abstractinfo":"本文在TiZrFe共晶合金的基础上,研究了用Cu、Ni替代Fe对钎料熔点及组织结构的影响.研究结果表明,成分为Ti55Zr20Fe10Ni10Cu5的钎料的熔点最低,为846.1℃.通过快淬工艺将该钎料制成非晶带材,制得的非晶带钎料在真空条件下与母材Ti-6Al-4V进行焊接,用SEM观察钎焊区组织.发现需要在900℃下保温20min可获得较好的焊接组织.","authors":[{"authorName":"王鑫","id":"28a39533-37c2-4ffe-933e-12b786153b21","originalAuthorName":"王鑫"},{"authorName":"祁焱","id":"4970e956-1dd2-4673-98c5-7f9d8c8bb6c3","originalAuthorName":"祁焱"},{"authorName":"张羊换","id":"78360d02-eed0-4534-a875-edf66ee3b01c","originalAuthorName":"张羊换"},{"authorName":"全白云","id":"ca0c3a31-ddc9-4a39-89f6-ece85b786618","originalAuthorName":"全白云"},{"authorName":"冯猛","id":"ca8ba3ed-5ec7-4674-9e25-cfc793a7fd11","originalAuthorName":"冯猛"},{"authorName":"王新林","id":"07d99344-cb30-465d-8436-1020fb9e2667","originalAuthorName":"王新林"}],"doi":"10.3969/j.issn.1005-8192.2006.01.008","fpage":"27","id":"7e4550a9-70e6-4668-bc22-e8ea1c6a24f0","issue":"1","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"ab2ae91a-c63a-4699-86da-974d5fba21b2","keyword":"TiZrFe钎焊料","originalKeyword":"TiZrFe钎焊料"},{"id":"27bb1a61-91cc-4519-8364-c55ddcfbbeeb","keyword":"熔点","originalKeyword":"熔点"},{"id":"858a8a4a-c31a-48ee-9b9e-a8fd4acf98f2","keyword":"钎焊","originalKeyword":"钎焊"}],"language":"zh","publisherId":"jsgncl200601008","title":"TiZrFe钎焊料熔点及焊接组织研究","volume":"13","year":"2006"},{"abstractinfo":"在宽温度范围内ZrW2O8都能保持较大各向同性的负膨胀系数,因而得到了广泛关注.本文介绍了ZrW2O8的基本性质、负膨胀机理和制备方法,重点介绍了近期复合材料的研究现状,ZrW288与Cu、Al、ZrO2及水泥复合得到低膨胀或近零膨胀材料.热错配应力及微结构对ZrW2O8复合材料性能的影响尚不明确,仍需实验及理论上的深入研究.","authors":[{"authorName":"王鑫","id":"cfec2446-b346-41b9-ad6d-c8157c9932d1","originalAuthorName":"王鑫"},{"authorName":"冯猛","id":"c3a1eecf-c2e9-4a45-bcbb-b832ba603b23","originalAuthorName":"冯猛"},{"authorName":"张建福","id":"a904e631-af55-4882-8009-42bdda3f18ee","originalAuthorName":"张建福"},{"authorName":"王新林","id":"2a447992-7d11-4085-801c-4775e50bd07b","originalAuthorName":"王新林"}],"doi":"","fpage":"60","id":"80ab7603-6e7a-4326-b02d-4d4476624602","issue":"2","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"658799e4-3aa4-45cc-a8ae-16219a905bd3","keyword":"ZrW2O8","originalKeyword":"ZrW2O8"},{"id":"cab4977b-c292-40ad-9c9e-96fd25602479","keyword":"负热膨胀","originalKeyword":"负热膨胀"},{"id":"e03f4aac-21d8-4342-9339-f5e0e2d8f116","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"jsgncl200902015","title":"低膨胀钨酸锆(ZrW2O8)复合材料的研究现状","volume":"16","year":"2009"},{"abstractinfo":"元素替代法是贮氢合金研究者常采用的一种提高贮氢合金电化学综合性能的重要研究方法.本文通过对近几年内La-Mg-Ni系贮氢合金的研究现状分析,综述了元素替代法在制备La-Mg-Ni系贮氢电极合金中的应用,并对La-Mg-Ni系贮氢合金将来的发展方向做出了预测.","authors":[{"authorName":"赵小龙","id":"285b2686-6691-4318-b56d-f0b813efb9bd","originalAuthorName":"赵小龙"},{"authorName":"张羊换","id":"46750d1d-1a69-4d21-901d-35fcb084e8fa","originalAuthorName":"张羊换"},{"authorName":"董小平","id":"87373efc-5f68-4266-89c8-a7c9388e386d","originalAuthorName":"董小平"},{"authorName":"任江远","id":"6672204a-2982-4bf6-82dc-55c88ef2c669","originalAuthorName":"任江远"},{"authorName":"冯猛","id":"03c77955-1262-41da-a432-8eb482082458","originalAuthorName":"冯猛"},{"authorName":"王新林","id":"131659bd-03fc-48a6-bbd2-4fc2184500d9","originalAuthorName":"王新林"}],"doi":"10.3969/j.issn.1005-8192.2006.06.007","fpage":"26","id":"860e8958-fc05-49f4-a788-d278693b20f6","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"d4fa2770-9d07-4e88-aa4f-fe14104d14d5","keyword":"元素替代","originalKeyword":"元素替代"},{"id":"7b8c968c-a84b-4ea0-8032-8b51e5545bc7","keyword":"La-Mg-Ni系贮氢合金","originalKeyword":"La-Mg-Ni系贮氢合金"},{"id":"37824530-0713-4c35-994c-bef59b5e3fae","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"jsgncl200606007","title":"元素替代在制备La-Mg-Ni系贮氢电极合金中的应用","volume":"13","year":"2006"},{"abstractinfo":"本文主要阐述了无钴稀土系AB5型贮氢合金研究现状,介绍了通过真空快淬技术及成分设计来改善其微观结构,从而提高AB5型贮氢合金的综合电化学性能的方法.并根据目前发展现状指出了无钴稀士系AB5型贮氢合金未来研究方向.","authors":[{"authorName":"任江远","id":"734e0815-ccbd-436c-898b-322d78d9ca7c","originalAuthorName":"任江远"},{"authorName":"张羊换","id":"852b51a7-a023-4187-80d0-c39f59bb9d7d","originalAuthorName":"张羊换"},{"authorName":"董小平","id":"99a00e4c-4b46-4e56-ae18-749d757cbde6","originalAuthorName":"董小平"},{"authorName":"冯猛","id":"aaf8bec2-3b4b-40b5-9d67-9d186d557753","originalAuthorName":"冯猛"},{"authorName":"韩晓英","id":"071a9a29-b95e-4991-b4fa-d2a8958c9f8d","originalAuthorName":"韩晓英"},{"authorName":"王新林","id":"aec941f8-11bd-4e8d-ad08-62961cd7abe4","originalAuthorName":"王新林"}],"doi":"10.3969/j.issn.1005-8192.2005.05.008","fpage":"28","id":"8e8e76d0-531e-46ad-b8ef-f8b7ee3957db","issue":"5","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"a0cd8acb-02b6-4e97-baa9-950f06ae6f9d","keyword":"AB5型贮氢合金","originalKeyword":"AB5型贮氢合金"},{"id":"0a338b5c-6c7a-455f-b17d-79b30bf052d6","keyword":"快淬技术","originalKeyword":"快淬技术"},{"id":"2a5dc846-dd61-4d90-bc57-7b04a51175d0","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"jsgncl200505008","title":"快淬无钴AB5型贮氢合金研究进展","volume":"12","year":"2005"}],"totalpage":3,"totalrecord":24}