黎桂江
,
彭倩
,
李聪
,
王莹
,
高见
,
陈蜀源
,
王均
,
沈保罗
上海金属
doi:10.3969/j.issn.1001-7208.2007.06.003
应用高压直流辉光放电等离子技术,改变氮化工艺参数,对316L奥氏体不锈钢进行表面渗氮处理.利用XRD衍射仪分析渗氮层的相组成,SEM观察氮化层厚度和结构,表面显微硬度计检测渗层的表面硬度,结果表明:当氮化温度T为400℃时,氮化层为单一的Sphase;当420℃≤T<480℃时,氮化层为CrN+S-phase两相混合;当温度为480℃时,Sphase衍射峰消失,仅出现CrN相;渗层厚度约为5~9 μm,渗层深度随着温度和气压的升高而增加;表面显微硬度随着温度和气压的增加而增加,最高的表面显微硬度可达839Hv0.1.在MM200磨损实验机上用环块式的方法评价磨损性能,结果表明等离子氮化显著提高了不锈钢表面的耐磨性能;用SEM观察磨损表面形貌,表明未氮化的不锈钢的磨损机制主要是粘着磨损、氧化磨损和磨粒磨损;等离子氮化试样的磨损机制主要是氧化磨损.
关键词:
316L不锈钢
,
直流等离子氮化
,
显微组织
,
磨损性能
付长明
,
刘常升
,
沈峰满
,
陈蜀源
材料科学与工艺
QPQ盐浴复合处理是一种新的金属盐浴表面强化改性技术,将QPQ技术应用干3Cr2W8V钢,利用OM、SEM、显微硬度计、X射线衍射仪、高温摩擦磨损试验机和电化学工作站分别对QPQ渗层的显微组织、化学成分、显微硬度,物相,耐磨性和耐蚀性进行了分析研究.结果表明,QPQ渗层表面平整,当盐浴氮碳共渗时间一定时,随着氮碳共渗盐浴温度的升高渗层表面首先出现Fe3N相,其次出现Fe3O4和Fe4N相,最后出现Fe2N相.QPQ处理后试样的表面硬度在600-1400 HV0.1,基体硬度为520 HV0.1.经QPQ处理试样的最小磨损量仅为基体磨损量的1/2,且其摩擦系数也最小,其QPQ处理工艺为氮碳共渗温度580℃、氮碳共渗时间1 h.在氧化盐浴温度一定时,随着氧化时间的延长,腐蚀电位逐渐升高,耐蚀性能逐渐提高;当盐浴氧化参数设定为氧化温度380℃、氧化时间120 min时,QPQ处理得到的试样的腐蚀电位最高,耐蚀性能最佳.
关键词:
化学热处理
,
QPQ
,
高温耐磨性
,
耐蚀性
,
极化曲线