{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用超低碳和微合金化的成分设计,采用TMCP(Thermomechanical Controlled Proces)-T(Tempering) 工艺,充分利用晶粒细化和针状铁素体与粒状贝氏体组织强化等手段,辅以回火处理工艺,在工业试制条件下得到韧性良好屈服强度为550MPa级的超低碳贝氏体钢。","authors":[{"authorName":"吴开明","id":"5a1d1ed7-6a3f-4705-b4a5-0b18a1099a97","originalAuthorName":"吴开明"}],"categoryName":"|","doi":"","fpage":"40","id":"8db87b91-9209-4c8c-8567-5b21b9941a2f","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"d2ad483a-155d-4caa-9cee-5ab201edf6bc","keyword":"低合金高强度钢;贝氏体;TMCP;回火","originalKeyword":"低合金高强度钢;贝氏体;TMCP;回火"}],"language":"zh","publisherId":"1001-0963_2010_6_13","title":"超低碳高强度Q550D贝氏体钢的研制","volume":"22","year":"2010"},{"abstractinfo":"研究了三种低合金高强度钢在奥氏体再结晶区及未再结晶区热形变对粒状贝氏体转变的动力学、组织形貌、亚结构、晶体位向关系等方面的作用,并根据形交奥氏体的结构特点分析了对贝氏体转变的作用。","authors":[{"authorName":"崔文暄","id":"9b570a6f-c91e-4f70-978e-6efd687fc76b","originalAuthorName":"崔文暄"},{"authorName":"刘梓葵","id":"8b6d47c1-959b-4e6b-81dd-8798223bd5af","originalAuthorName":"刘梓葵"}],"categoryName":"|","doi":"","fpage":"70","id":"516e3f26-0340-4654-bb46-02cbbb7f284c","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[],"language":"zh","publisherId":"1005-3093_1988_3_10","title":"低合金高强度钢热形变奥氏体的贝氏体转变","volume":"2","year":"1988"},{"abstractinfo":"对系列Si,Mn,Ni等合金元素合金化的低碳超高强度贝氏体钢(LUHSBS),通过控制相变温度、冷却与回火参数,可明显提高其韧性.与同等强度(>1500 MPa)的高级马氏体钢23MnNiCrMo相比,研制的LUHSBS冲击吸收能(AKV≥185J)提高3倍以上.强度与韧性优化结合的根本原因在于组织细化、贝氏体铁素体(BF)中含碳量增加、碳化物消除以及存在较高体积分数的稳定膜状残余奥氏体(AR).原子力显微镜和扫描隧道显微镜分析证实:钢中不存在对韧性有损伤作用的块状AR;不仅切变单元超细化,而且超细晶粒的平均尺寸小于20 nm,部分切变单元的平均厚度仅约1.6 nm.这些精细组织是影响钢的强度、AR稳定性和AKV增加的主要原因.分析了强度与韧性改善的物理机制.","authors":[{"authorName":"高宽","id":"fff872c4-f65b-431d-8ba7-071851074550","originalAuthorName":"高宽"},{"authorName":"王六定","id":"99f82639-d5ae-4cae-8064-13102c629738","originalAuthorName":"王六定"},{"authorName":"朱明","id":"a6fde16c-9625-41b0-8448-90c7c82d3a18","originalAuthorName":"朱明"},{"authorName":"陈景东","id":"6722a825-d8ff-4636-90d1-0b6ee3a7f8f9","originalAuthorName":"陈景东"},{"authorName":"施易军","id":"1e22e9dd-a7b0-4a0c-97ac-c04af5b95089","originalAuthorName":"施易军"},{"authorName":"康沫狂","id":"35859cf6-39bb-4017-bf78-386d52add8f6","originalAuthorName":"康沫狂"}],"doi":"10.3321/j.issn:0412-1961.2007.03.018","fpage":"315","id":"06b0409b-699b-4a79-8d45-de19a52ee499","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"b9b5e7d9-9148-415a-8ad2-863ba16af0fc","keyword":"贝氏体钢","originalKeyword":"贝氏体钢"},{"id":"532365e9-bbb3-45cc-ac3e-cbaffd79436e","keyword":"贝氏体板条","originalKeyword":"贝氏体板条"},{"id":"2cb4ebff-f965-4caa-8462-b97f29d3890f","keyword":"超细组织","originalKeyword":"超细组织"},{"id":"2d763fa4-2665-4b7b-a0cd-048ec82757c1","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"},{"id":"fbb10d6c-c740-4ece-86e3-18baacf6b98d","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsxb200703018","title":"低合金超高强度贝氏体钢的晶粒细化与韧性提高","volume":"43","year":"2007"},{"abstractinfo":"为研究新型高强度贝氏体钢的环境适应性,测试了两种不同含碳量的含硅高强度贝氏体钢的力学性能和环境断裂敏感性.结果表明,强度(含碳量)对贝氏体钢的环境断裂敏感性具有明显的影响,高含碳量贝氏体钢(HC)(C0.88%,σy=1818 MPa)试样的环境断裂敏感性明显高于低含碳量贝氏体钢(LC)(C 0.33%,σy=1310 MPa),HC钢性能较同强度级别马氏体时效钢T250为差,而LC钢性能相当于相同强度级别的30CrMnSiNi2A钢.","authors":[{"authorName":"江波","id":"df064387-b128-452a-ba91-7c1de5c17401","originalAuthorName":"江波"},{"authorName":"陈刚","id":"36708942-f167-45fa-938a-2be0bbaa255f","originalAuthorName":"陈刚"},{"authorName":"刘芬斌","id":"3aae8aa7-799d-4556-bc18-c14ff6d9651f","originalAuthorName":"刘芬斌"},{"authorName":"任学冲","id":"2ec32f33-c7f7-4bd8-9f36-eb6ef8faa89d","originalAuthorName":"任学冲"},{"authorName":"褚武扬","id":"4e1aa627-488b-4191-b427-8c4911c75c47","originalAuthorName":"褚武扬"}],"doi":"","fpage":"665","id":"d06ce967-8a9b-4c92-ac71-6c6c62e69c08","issue":"9","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"0cbe46d9-7317-4f8d-b18d-186e68b86d5d","keyword":"贝氏体钢","originalKeyword":"贝氏体钢"},{"id":"aaf9a25a-5729-4452-93a0-b425f46c63fe","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"52e95998-1fe4-4e15-9462-c68308c6ad10","keyword":"环境断裂","originalKeyword":"环境断裂"}],"language":"zh","publisherId":"fsyfh201009001","title":"含硅低合金高强度贝氏体钢的环境断裂敏感性","volume":"31","year":"2010"},{"abstractinfo":"对系列低碳、超高强度贝氏体钢(LUHSBS),通过审慎地使用硅、锰、镍等合金元素并有效地控制相变温度、冷却与回火参数,强韧性结合良好,又冲击能(AKV ≥185 J)与同强度(>1500 MPa)的高级马氏体钢23MnNiCrMo相比提高三倍以上。强度与韧性增强的根本原因在于组织细化、贝氏体铁素体(BF)中含碳量增加、碳化物消除以及存在较高体积分数的膜状残余奥氏体(AR)。原子力显微镜和扫描隧道显微镜分析证实:钢中不存在损伤韧性的块状AR区。不仅亚单元被超细化,而且超细亚晶粒的平均尺寸小于20 nm以及部分切变单元的平均厚度仅约1.6 nm。所有这些都是影响钢的强度、AR稳定性和AKV的主要原因。此外,对强度与韧性改善的物理机制还进行了深入的分析。","authors":[{"authorName":"高宽","id":"9f63ba49-088e-49c2-b5c8-2e2d713e2dd8","originalAuthorName":"高宽"},{"authorName":"王六定","id":"b582332e-104b-4c80-b98b-3a4a8df22f1e","originalAuthorName":"王六定"},{"authorName":"朱明","id":"c5b02317-2e07-4d03-846e-72c5ed629571","originalAuthorName":"朱明"},{"authorName":"陈景东","id":"dd2b2bfa-fa5a-4d57-887b-221628d4235f","originalAuthorName":"陈景东"},{"authorName":"施易军","id":"da237abe-e7ab-4758-868a-1b98f39e0934","originalAuthorName":"施易军"},{"authorName":"陈国栋","id":"cda5a78b-1d1b-4ed1-b0a5-07f91159ca36","originalAuthorName":"陈国栋"}],"categoryName":"|","doi":"","fpage":"315","id":"f96c5cbd-2d7d-49b1-8e43-01bb224a51ea","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f9803b44-7423-42ab-ba6a-f07522141506","keyword":"贝氏体束","originalKeyword":"贝氏体束"},{"id":"5aff64f1-d598-4a12-9d6a-a20e284122a4","keyword":"bainitic laths","originalKeyword":"bainitic laths"},{"id":"8f6c2d15-b4ee-4f68-b403-b48a268a650d","keyword":"sub-units","originalKeyword":"sub-units"},{"id":"8aff234b-0b0b-47aa-912f-1c719f047bf5","keyword":"refined microstructure","originalKeyword":"refined microstructure"}],"language":"zh","publisherId":"0412-1961_2007_3_13","title":"含硅的低合金超高强度贝氏体钢的晶粒细化与冲击能提高","volume":"43","year":"2007"},{"abstractinfo":"文章研究了高强度超低碳贝氏体钢的精细结构.结果表明,高强度超低碳贝氏体钢理想的显微组织是无碳化物贝氏体、板条马氏体和下贝氏体,组织强化(包括细晶强化)是高强度超低碳贝氏体钢主要的强化方式,低水平的钒含量对析出强化没有贡献.","authors":[{"authorName":"徐荣杰","id":"f4d29a2d-6c18-42a7-8994-5659ff8472e9","originalAuthorName":"徐荣杰"},{"authorName":"杨静","id":"f3fefad4-459a-4e0f-b217-f1bcf0f55abf","originalAuthorName":"杨静"},{"authorName":"严平沅","id":"efa841a5-6ccf-4044-a158-a2c5565065d2","originalAuthorName":"严平沅"},{"authorName":"王晓峰","id":"1e40dc1e-d5e9-4e7e-a675-884a1f00bac8","originalAuthorName":"王晓峰"}],"doi":"10.3969/j.issn.1001-0777.2007.01.003","fpage":"10","id":"9260c812-c014-47c1-ab46-33a2a26deccb","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"5652b0bb-b78d-4447-8073-d139b9f698a2","keyword":"超低碳贝氏体钢","originalKeyword":"超低碳贝氏体钢"},{"id":"e9e8286e-a189-4afe-a366-d3b4736957bf","keyword":"精细结构","originalKeyword":"精细结构"},{"id":"48edb295-37e8-4225-ae25-860f15b93e0e","keyword":"析出强化","originalKeyword":"析出强化"},{"id":"de655dc8-41a5-4be4-9e4d-146350d427ef","keyword":"无碳化物贝氏体","originalKeyword":"无碳化物贝氏体"},{"id":"9f64bc02-efb9-4e06-8b42-65099f007c25","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"wlcs200701003","title":"高强度超低碳贝氏体钢显微组织电镜研究","volume":"25","year":"2007"},{"abstractinfo":"利用贝氏体强化,可使低碳低合金钢获得高强度并兼备一定的塑性和韧性.而且通过控轧控冷技术可实现钢的组织和性能控制,在降低成本的同时也保证了焊接性,该类钢种具有广泛的开发和应用前景.但由于贝氏体转变的复杂性,具有900 MPa以上屈服强度的贝氏体钢尚未在大生产中实现.因此,在对高强贝氏体钢中合金元素的作用进行了分析的基础上,比较了不同贝氏体形貌下的力学性能,总结了获取不同贝氏体形貌的制备工艺,最后提出了获取900 MPa以上屈服强度和15%以上伸长率的高强高塑性贝氏体钢的目标微观组织特征.","authors":[{"authorName":"李大赵","id":"419dfc65-9907-4835-b4f8-cd1eabd4b567","originalAuthorName":"李大赵"},{"authorName":"崔天燮","id":"98ab8f8e-9817-4f86-85a7-ba4cb3355caa","originalAuthorName":"崔天燮"},{"authorName":"王育田","id":"eb83ee45-4ec2-45a8-b37d-8102b0518ebd","originalAuthorName":"王育田"},{"authorName":"付培茂","id":"b6fd0bd6-8583-4734-95e3-19e584b48b6a","originalAuthorName":"付培茂"},{"authorName":"曹永禄","id":"78c8eda6-a688-4cb7-8160-97e20b9b6c03","originalAuthorName":"曹永禄"},{"authorName":"孟传峰","id":"7c3049aa-c2d6-4f22-b2bf-14eaef09802b","originalAuthorName":"孟传峰"}],"doi":"","fpage":"1","id":"ddd110f7-94e4-4f62-9d52-a34fb7b3d146","issue":"11","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"80efccc2-ea98-41c8-8011-a30c32eb28e5","keyword":"微合金化","originalKeyword":"微合金化"},{"id":"cc497ccf-72c6-4135-a835-cca951b8ec96","keyword":"控轧控冷","originalKeyword":"控轧控冷"},{"id":"b415b275-ba0a-4aef-aad3-c4699ca03a88","keyword":"贝氏体","originalKeyword":"贝氏体"},{"id":"ba676c31-242c-4e85-848f-1a53b3b6d616","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"46dd361c-c1b1-4da3-b14b-fd42cf832ddd","keyword":"性能特征","originalKeyword":"性能特征"}],"language":"zh","publisherId":"gtyjxb201311001","title":"低碳低合金高强贝氏体钢的研究现状及进展","volume":"25","year":"2013"},{"abstractinfo":"利用超低碳和微合金化的成分设计,采用TMCP (Thermomechanical Controlled Proces)-T(Tempering)工艺,充分利用晶粒细化和针状铁素体与粒状贝氏体组织强化等手段,辅以回火处理工艺,在工业试制条件下得到韧性良好,屈服强度为550MPa级的超低碳贝氏体钢.","authors":[{"authorName":"夏政海","id":"d1050b59-ad96-4ea4-9d52-23b7e950f766","originalAuthorName":"夏政海"},{"authorName":"曹志强","id":"a54da432-a8af-41af-9f34-78ee28543675","originalAuthorName":"曹志强"},{"authorName":"罗登","id":"e62d7e63-a0e6-46b5-91e2-70df4b816406","originalAuthorName":"罗登"},{"authorName":"张永东","id":"dc8bf9a2-a606-4a02-8ff7-4d12cde39195","originalAuthorName":"张永东"},{"authorName":"卢伟煜","id":"396fcf43-9717-491b-965c-e195339f3535","originalAuthorName":"卢伟煜"},{"authorName":"吴开明","id":"90e95358-5bfa-4fed-9da5-d96eca7dbe20","originalAuthorName":"吴开明"}],"doi":"","fpage":"40","id":"b1bf32d5-a5fe-4238-857f-181a46ad897b","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"306b5824-61c7-4a9a-b490-588fca646699","keyword":"低合金高强度钢","originalKeyword":"低合金高强度钢"},{"id":"80c94604-e609-4b4c-8140-81cf5922433b","keyword":"贝氏体","originalKeyword":"贝氏体"},{"id":"d311b1c5-0c8b-47c4-bf6f-bda443ec6e8c","keyword":"TMCP","originalKeyword":"TMCP"},{"id":"2e48190f-fc51-41f8-a23a-604eb0eead58","keyword":"回火","originalKeyword":"回火"}],"language":"zh","publisherId":"gtyjxb201006010","title":"超低碳高强度Q550D贝氏体钢的研制","volume":"22","year":"2010"},{"abstractinfo":"采用合金化方法生产的高强度高韧性贝氏体钢轨及道岔,其热轧态抗拉强度大于1250 MPa,比U75V提高25%;轨腰冲击韧性大于30 J/cm2,比U75V提高3倍以上。介绍了热轧贝氏体钢轨的强化机理、生产工艺及各项检验结果。用贝氏体钢制作的铁路道岔在线路运行已一年半以上,货运量达2亿t,目前仍在使用。在北京铁路局铺设的全贝氏体组合道岔,其使用寿命进一步提高,高强度高韧性贝氏体钢在铁路使用将得到较大的社会和经济效益。","authors":[{"authorName":"陈建军","id":"381b0a40-8120-4bbb-8354-f53e1661bc19","originalAuthorName":"陈建军"},{"authorName":"姜茂发","id":"f03e243a-d4a7-4f4d-8316-cbdb5f1d54b0","originalAuthorName":"姜茂发"},{"authorName":"李凯","id":"b8cd5598-ed79-47ca-aec2-8ec183df6c0d","originalAuthorName":"李凯"}],"categoryName":"|","doi":"","fpage":"68","id":"6ac779c3-3e14-438a-b93b-8ca77951c66c","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1fd78a8d-c981-4a81-9fa0-f6c0386e7e60","keyword":"高强度;高韧性;贝氏体钢轨","originalKeyword":"高强度;高韧性;贝氏体钢轨"}],"language":"zh","publisherId":"0449-749X_2007_2_16","title":"高强度高韧性贝氏体钢轨研究","volume":"42","year":"2007"},{"abstractinfo":"对系列低碳、超高强度贝氏体钢(LCUHSBS),通过有效地控制相变温度、冷却速率与回火参数,贝氏体铁素体(BF)含碳量增加、组织细化、碳化物消除以及存在高稳定性、高体积分数的膜状残余奥氏体(AR).利用AFM、SEM等分析并测试了贝氏体钢的显微组织与晶粒尺寸,结果表明,板条束内含有若干大致平行的BF板条,而每一板条由许多切变单元组成;切变单元进一步又分成大量超细亚结构,其直径约为18nm.如此细化的显微组织确保了贝氏体钢在超高强度条件下,冲击吸收能成倍提高.","authors":[{"authorName":"王六定","id":"e0db0070-a69c-4829-9645-fb28f24c0ae0","originalAuthorName":"王六定"},{"authorName":"朱明","id":"27ece19a-e114-428f-8f8a-e36f8e0384fe","originalAuthorName":"朱明"},{"authorName":"陈景东","id":"2544b347-f7b0-4dea-8f94-43fd1eded423","originalAuthorName":"陈景东"},{"authorName":"施易军","id":"8c83875c-fe1f-4265-b07b-5e0de4efc4cf","originalAuthorName":"施易军"},{"authorName":"陈国栋","id":"f1bea482-498a-4b93-8450-b7770159203c","originalAuthorName":"陈国栋"}],"doi":"10.3969/j.issn.1009-6264.2007.05.010","fpage":"42","id":"737b4309-e782-4090-bfea-5d7417c7ff94","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"773e4af5-9158-430d-852e-7ecea695f922","keyword":"贝氏体板条束","originalKeyword":"贝氏体板条束"},{"id":"d0a88adc-8264-466c-acb8-81d747856ceb","keyword":"铁素体板条","originalKeyword":"铁素体板条"},{"id":"8be7df2b-a37f-4999-83d8-6d5cb1af43ac","keyword":"切变单元","originalKeyword":"切变单元"},{"id":"8bad2ac9-ee3d-4695-9cc9-dbf023556f51","keyword":"超细亚结构","originalKeyword":"超细亚结构"},{"id":"982597f1-785b-4095-a554-a3779d91b98e","keyword":"残余奥氏体膜","originalKeyword":"残余奥氏体膜"}],"language":"zh","publisherId":"jsrclxb200705010","title":"低碳超高强度贝氏体钢的组织细化","volume":"28","year":"2007"}],"totalpage":9375,"totalrecord":93748}