{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用冷轧复合工艺制备了用于锂离子电池封装用的层状A1-Ni双金属复合带材.针对轧制复合工艺和热处理退火工艺对Al-Ni双金属复合带材界面化合物种类、结构及其应用特性进行了研究.结果表明:合适的轧制变形量是实现A1层和Ni层复合的关键因素,在本实验中复合轧制的变形量应控制在50%~60%之间.在后续退火工艺中,Al层和Ni层界面上首先形成的是A13Ni相,该相有利于A1层和Ni层实现牢固的冶金结合.随着退火时间的延长,随后会形成较脆性的Al3Ni2相,该相以层状形式存在两层金属中间,容易造成Al层和Ni层金属的剥离,因此通过退火工艺控制界面化合物形成的类型和结构十分重要.实验发现,在698~748 K温度范围内退火1h的轧制复合Al-Ni双金属复合带材,具有好的抗折弯效果、稳定的焊接性能和合适的电阻值,可以作为锂电池封装材料来进行使用.","authors":[{"authorName":"余琨","id":"eff20fd1-6e4f-4252-a9ae-d7542cb40173","originalAuthorName":"余琨"},{"authorName":"熊汉青","id":"1cc77751-5d85-4886-80c7-5a5a9eda505a","originalAuthorName":"熊汉青"},{"authorName":"戴翌龙","id":"01bb4963-f3b8-4ac2-b7b4-177c5e2d9928","originalAuthorName":"戴翌龙"},{"authorName":"滕飞","id":"a7040af6-254d-4245-886e-5fbf7cca9b5c","originalAuthorName":"滕飞"},{"authorName":"范素峰","id":"e35eb27f-44d5-4751-b87a-464e51730824","originalAuthorName":"范素峰"},{"authorName":"乔雪岩","id":"b812acee-f4b0-4067-ac6f-2a392ebcd4fe","originalAuthorName":"乔雪岩"},{"authorName":"文利","id":"934c8e37-880c-4835-ab98-913c8d2aeef5","originalAuthorName":"文利"}],"doi":"","fpage":"1100","id":"697d86ad-dc55-481e-a4aa-8b823c90154b","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"00714d67-7cbc-474c-8aa4-489885610330","keyword":"A1-Ni层状复合材料","originalKeyword":"A1-Ni层状复合材料"},{"id":"115f1a85-1a14-4ced-b87c-381d6f62eb54","keyword":"轧制复合","originalKeyword":"轧制复合"},{"id":"bf9dd525-3d5e-45ea-a52e-37d5b02f9bc9","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"xyjsclygc201605002","title":"锂离子电池封装用Al-Ni层状材料的复合过程及应用特性研究","volume":"45","year":"2016"},{"abstractinfo":"从仿生的角度介绍了仿生复合材料尤其是层状复合材料的设计原理、制备方法、主要研究内容和现状.指出了仿生复合材料的应用前景和今后的发展方向.","authors":[{"authorName":"邵红红","id":"7b8f4b9e-e484-436a-91cf-2732fc92f98e","originalAuthorName":"邵红红"},{"authorName":"程晓农","id":"9536f7db-1b66-4cb7-b82b-476426ee23f6","originalAuthorName":"程晓农"},{"authorName":"陈光","id":"c14d8166-d7a4-4278-a36c-c2758a631c8e","originalAuthorName":"陈光"}],"doi":"","fpage":"57","id":"93ece734-f9e2-4a50-9e44-67f0fc730f1b","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a3154d6f-367a-4372-9225-20c23b6164de","keyword":"仿生设计","originalKeyword":"仿生设计"},{"id":"85092210-0b92-4b2c-8e95-51e2316b6daf","keyword":"层状复合材料","originalKeyword":"层状复合材料"},{"id":"6a6f046a-7c41-4549-96b0-a59f15694617","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb200204018","title":"仿生层状复合材料研究概况","volume":"16","year":"2002"},{"abstractinfo":"用室温固相轧制复合法制备了AgCuCe/TU1层状复合材料,研究了不同扩散退火工艺对AgCuCe/TU1界面结合性能的影响,测定了复合材料复层和基体的硬度,观察了试样的界面微观组织.结果表明:600 ℃/0.5 h扩散退火可以改善界面结合状态和界面附近组织形貌,获得充分的再结晶组织和致密的界面结合状态;700 ℃/0.5 h扩散退火在界面处形成细晶区和孔洞;750 ℃/0.5 h扩散退火使AgCuCe/TU1在界面处形成氧化物夹杂,严重损害界面结合性能.","authors":[{"authorName":"乔勋","id":"6d446c2d-7b50-4425-bf51-4920c94cd3bb","originalAuthorName":"乔勋"},{"authorName":"王健","id":"18ac1bc7-863f-42d1-b01f-781a7f557305","originalAuthorName":"王健"},{"authorName":"周世平","id":"11a63f93-6e01-4b4b-8c0c-4ce09c412da6","originalAuthorName":"周世平"},{"authorName":"贺晓燕","id":"ec54ab0e-dc98-4ada-a046-f0d72dfb919d","originalAuthorName":"贺晓燕"},{"authorName":"李林修","id":"efd53335-111d-45c7-85b2-9a1297e3ae8c","originalAuthorName":"李林修"}],"doi":"10.3969/j.issn.1004-0676.2009.02.002","fpage":"9","id":"cc8ee9d0-cb22-4a11-a0a9-b9aa760c4c0a","issue":"2","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"fab44662-84b5-4e47-bef9-3e548f603f07","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"d1fb4f59-a0ec-48ca-aee6-40914621c0dc","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"ebf38b0d-7e52-4935-ad10-520b9f4448bc","keyword":"扩散退火","originalKeyword":"扩散退火"},{"id":"01a711e3-c933-4bcb-8696-13a5edf887ee","keyword":"界面","originalKeyword":"界面"},{"id":"2135cf0b-e8b2-4418-8070-0ff74405fb2b","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"gjs200902002","title":"AgCuCe/TU1层状复合材料扩散退火工艺研究","volume":"30","year":"2009"},{"abstractinfo":"回顾了颗粒增强铜基复合材料的发展和常用颗粒增强相;简介了新型三元层状陶瓷材料Mn+1AXn,并将其主要成员与常用铜基复合材料增强相进行比较;介绍了Mn+1AXn陶瓷与铜的复合材料目前的研究进展;展望了该类复合材料的发展和应用前景.","authors":[{"authorName":"高立强","id":"529ea02f-4f4b-4e08-a968-7a473607b58b","originalAuthorName":"高立强"},{"authorName":"周洋","id":"2c2223c5-8de1-4a46-a940-a559cd93cd8d","originalAuthorName":"周洋"},{"authorName":"翟洪祥","id":"71574bc2-52ae-4359-8c34-d0fb54739812","originalAuthorName":"翟洪祥"},{"authorName":"李世波","id":"e675a565-170f-4298-acb0-37a54daba56e","originalAuthorName":"李世波"}],"doi":"","fpage":"397","id":"b566265b-3887-4222-a8c3-a5163832cff6","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2179257a-cc98-4f50-ba11-0dade5693ae7","keyword":"颗粒增强铜基复合材料","originalKeyword":"颗粒增强铜基复合材料"},{"id":"11f54872-2fc6-434f-9a89-484ec8a42a24","keyword":"Mn+1AXn","originalKeyword":"Mn+1AXn"},{"id":"47aab06a-5f03-4cb7-bf43-9d8d58bd6c8e","keyword":"Ti3SiC2","originalKeyword":"Ti3SiC2"},{"id":"2a4bb25f-a5ee-432a-89fc-4d262a2e011e","keyword":"Ti3AlC2","originalKeyword":"Ti3AlC2"},{"id":"90396f57-6e46-478f-a0c8-1d11dab4ece0","keyword":"Ti2SnC","originalKeyword":"Ti2SnC"}],"language":"zh","publisherId":"cldb2006z2117","title":"Mn+1AXn三元层状陶瓷增强铜基复合材料的研究进展","volume":"20","year":"2006"},{"abstractinfo":"采用脉冲电沉积的方法制备了Fe_(78)Si_9B_(13)/Ni层状复合材料(Ni-Fe_(78)Si_9B_(13)-Ni三层结构).用SEM和TEM对层状复合的微观组织进行观察,Ni层的晶粒尺寸平均约为50 nm,非晶层和纳米Ni层具有良好的界面结合.Fe_(78)Si_9B_(13/Ni层状复合材料的审温断裂强度达到2090 MPa,断裂伸长率达到8.5%,其伸长率远大于单相Fe_(78)Si_9B_(13)非晶带的伸长率(1.39%);在450℃高温拉伸,复合材料的延伸率达到了115.5%,远大于单相非晶带的高温延伸率(36.3%),实现了通过制备层状复合材料来提高非晶带塑性的目的.","authors":[{"authorName":"李细锋","id":"019428c6-4714-44c7-ac78-d886119c1ba0","originalAuthorName":"李细锋"},{"authorName":"孔啸","id":"e6a7a3e2-f74e-4d50-8202-75510809081b","originalAuthorName":"孔啸"},{"authorName":"陈军","id":"04f283d5-9807-4550-b15d-511a2834b7ab","originalAuthorName":"陈军"},{"authorName":"张凯锋","id":"96d7f762-3e89-40f0-a6a4-61722f2e1465","originalAuthorName":"张凯锋"}],"doi":"","fpage":"91","id":"21760469-b380-4a7a-86b2-0a32f39bd6a7","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"47d87e24-895a-4cc1-846b-2072d698b420","keyword":"层状复合材料","originalKeyword":"层状复合材料"},{"id":"d736c635-53f7-4987-85c5-1d36ab83ddc1","keyword":"Fe_(78)Si_9B_(13)/Ni","originalKeyword":"Fe_(78)Si_9B_(13)/Ni"},{"id":"ad55faa6-2478-4509-8172-12af9bdf71b3","keyword":"非晶合金","originalKeyword":"非晶合金"},{"id":"bd6121e4-5e70-47c6-8d03-eb2b4df460ca","keyword":"拉伸","originalKeyword":"拉伸"},{"id":"c7fae9e9-6f4c-4189-8a4a-c799f97876a8","keyword":"延伸率","originalKeyword":"延伸率"}],"language":"zh","publisherId":"fhclxb201001016","title":"Fe_(78)Si_9B_(13)/Ni层状复合材料的制备及其拉伸性能","volume":"27","year":"2010"},{"abstractinfo":"介绍了弱界面结合的和强界面结合的两类层状结构陶瓷复合材料的制备方法、独特的韧性等力学性能及增韧机理.裂纹沿界面的完全偏转及层中的残余应力分别是两类复合材料具有特殊力学性能的原因.","authors":[{"authorName":"张宝林","id":"18618d76-3817-4303-a578-22c8ed5f5267","originalAuthorName":"张宝林"},{"authorName":"庄汉锐","id":"7d56b8ee-1255-451a-a9d0-21e29df0cbb6","originalAuthorName":"庄汉锐"},{"authorName":"SajalkikP","id":"8f47b16e-c029-4571-b8ca-a2673bf7f1f2","originalAuthorName":"SajalkikP"}],"categoryName":"|","doi":"","fpage":"769","id":"4fe57490-f664-453e-8c8a-070e02d6da25","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d300e877-50b2-4c19-8c42-abb9cdfea6a5","keyword":"层状材料","originalKeyword":"层状材料"},{"id":"328532dc-605d-4879-bf2e-f523914829c7","keyword":" structural ceramic","originalKeyword":" structural ceramic"},{"id":"81e49f51-017a-43c3-a26c-fb9e889cc530","keyword":" preparation","originalKeyword":" preparation"},{"id":"f960bc43-fc12-4e9a-bd13-06de1293bb00","keyword":" mechanical properties","originalKeyword":" mechanical properties"}],"language":"zh","publisherId":"1000-324X_1997_6_14","title":"层状结构陶瓷复合材料","volume":"12","year":"1997"},{"abstractinfo":"介绍了层状磁电复合材料的特点和研究进展,阐述了层状磁电复合材料的理论,并在此基础上探讨了磁电材料的发展趋势.","authors":[{"authorName":"王磊","id":"f5b9953b-ae95-41c4-ac00-2cef0a730f5a","originalAuthorName":"王磊"},{"authorName":"杨成韬","id":"04053fc1-ee0c-4329-b121-48cc28868c0a","originalAuthorName":"杨成韬"},{"authorName":"郑鸿","id":"a597fd3b-b52f-47d2-a1d1-8ecf34e5b46e","originalAuthorName":"郑鸿"},{"authorName":"叶井红","id":"4e632cb6-a855-444b-a117-9333e674e6b1","originalAuthorName":"叶井红"}],"doi":"","fpage":"223","id":"67df851c-c0ce-4e04-8cf9-1928477bc8f0","issue":"z3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9da33389-f089-4844-8e03-46d8664a33c2","keyword":"磁电效应","originalKeyword":"磁电效应"},{"id":"71dad178-45f4-4455-a0b0-c350eb036d1c","keyword":"层状结构","originalKeyword":"层状结构"},{"id":"18fb0439-9946-47fa-b302-0e12abb7b981","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"c809b225-729a-4287-be9e-420befc7e3c8","keyword":"压电","originalKeyword":"压电"},{"id":"c009d8b0-a806-4c34-a9d7-7b5c2bd11483","keyword":"磁致伸缩","originalKeyword":"磁致伸缩"}],"language":"zh","publisherId":"cldb2008z3072","title":"层状磁电复合材料的研究进展","volume":"22","year":"2008"},{"abstractinfo":"利用弹性力学模型,推导了低频下磁致伸缩-压电双层复合材料中磁电电压系数的表达式,计算了Tb1-xDyxFe2y-BaTiO3层状复合材料中的横向磁电耦合.采用溶胶-凝胶法制备1.0%(摩尔分数)Mn掺杂BaTiO3(BaTb9Mn0.01O3-δ)压电陶瓷片.将Mn掺杂BaTiO3与Tb1-xDyxFe2-y胶合制成双层和三层复合材料,研究了复合材料在低频下的横向磁电效应.XRD和DSC分析结果表明,室温下Mn掺杂BaTiO3保持了其四方钙钛矿结构,降低了BaTiO3的居里点和相变潜热.在约33 kA/m偏置磁场下,Tb.xDyx Fe2y-BaTi0.99M n00.01O3+δ和Tb1-xDyx Fe2-y-BaTi0.9M n00.01O3+δ-Tb1 xDyxFe2-y的横向磁电耦合峰值分别为529.4 mV/A和1659.5 mV/A,分别是Tb1-xDyx Fe2y-BaTiO3和Tb1-x DyxFe2y-BaTiO3-Tb1-xDyxFe2-y的1.48和1.45倍.三层复合材料的横向磁电电压系数约是同类双层的3倍多.","authors":[{"authorName":"曹鸿霞","id":"f216fa78-1d59-4bcd-9af9-0d2d714a0fd2","originalAuthorName":"曹鸿霞"},{"authorName":"刘清惓","id":"b1af1012-0c11-4740-954d-c538c86f0efd","originalAuthorName":"刘清惓"},{"authorName":"王友保","id":"235bd661-906e-49a4-b3cc-806a0b07122b","originalAuthorName":"王友保"}],"doi":"","fpage":"146","id":"a4a3452f-6449-4e41-a04e-2ec349e93886","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"d08ceca9-30d5-4fda-90aa-73c4368badbc","keyword":"磁电效应","originalKeyword":"磁电效应"},{"id":"b6d1d71f-76b3-4301-837e-146f7fcb94c5","keyword":"层状复合物","originalKeyword":"层状复合物"},{"id":"0d1b0e79-b8dc-4ab7-afde-b1659ebf3541","keyword":"掺杂BaTiO3","originalKeyword":"掺杂BaTiO3"},{"id":"8c082ef0-a669-4de0-adb1-30a110131930","keyword":"Tb1-xDyxFe2-y(TDF)","originalKeyword":"Tb1-xDyxFe2-y(TDF)"},{"id":"70392584-9e76-4542-8080-8cd89ceae166","keyword":"压电材料","originalKeyword":"压电材料"}],"language":"zh","publisherId":"fhclxb201306022","title":"Tb1-xDyxFe2-y-BaTi0.99Mn0.01O3+δ层状复合材料的低频磁电耦合","volume":"30","year":"2013"},{"abstractinfo":"回顾了金属层状复合材料在工艺、机制方面的研究现状,分析了存在的问题,并对今后的研究进行了展望.","authors":[{"authorName":"彭大暑","id":"326248f6-7c73-492f-aa5d-a5802ea4cd5a","originalAuthorName":"彭大暑"},{"authorName":"刘浪飞","id":"0b00808f-8b5c-4aea-9268-0315e4d7f4cd","originalAuthorName":"刘浪飞"},{"authorName":"朱旭霞","id":"26636585-65cc-4351-9904-8d9b9db9424b","originalAuthorName":"朱旭霞"}],"doi":"","fpage":"23","id":"7bd0ef3a-0252-4e27-b223-e0c2afcc41e4","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"91c4087b-9393-4026-9877-210cacedbc92","keyword":"金属","originalKeyword":"金属"},{"id":"bf769c3f-b748-42cf-a029-00438d671d17","keyword":"层状复合材料","originalKeyword":"层状复合材料"},{"id":"8ec617b2-d30e-4cd5-8dae-b835986c5d35","keyword":"爆炸复合","originalKeyword":"爆炸复合"},{"id":"10d495c8-51c5-4491-a5a4-2f4b76b42455","keyword":"电磁复合","originalKeyword":"电磁复合"},{"id":"58b96970-61ca-422c-9a71-56afbfeb2acb","keyword":"压力加工复合","originalKeyword":"压力加工复合"}],"language":"zh","publisherId":"cldb200004011","title":"金属层状复合材料的研究状况与展望","volume":"14","year":"2000"},{"abstractinfo":"为满足核辐射屏蔽材料对结构-功能一体化的需求,采用大气等离子喷涂工艺在321不锈钢基体上设计并制备了 Fe-Ni-B 合金涂层复合材料,用于防护从裂变反应堆释放的中子与γ射线。在介绍该层状复合材料设计与制备的关键参数与技术细节的基础上,主要研究了层状复合材料对中子及γ射线的屏蔽性能。研究结果表明,该层状复合材料具有结构-功能一体化特征,理论计算及测试结果对比分析表明该材料对中子及γ射线拥有良好的综合屏蔽能力,有望在各种核辐射反应堆屏蔽系统中使用。","authors":[{"authorName":"杨文锋","id":"a07da1eb-4b82-47f5-80a0-e25fe00349a5","originalAuthorName":"杨文锋"},{"authorName":"刘颖","id":"383aaa18-eb57-4609-8b88-0d1dc736be16","originalAuthorName":"刘颖"},{"authorName":"伍晓勇","id":"12d2885b-3bc3-44a1-85a5-9391bbbcce45","originalAuthorName":"伍晓勇"}],"doi":"10.3969/j.issn.1001-9731.2015.09.015","fpage":"9076","id":"c7f88388-c3cc-454c-9674-39830508020a","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a6246ea9-a4d8-4def-b13a-1cc217c601f0","keyword":"Fe-Ni-B合金涂层","originalKeyword":"Fe-Ni-B合金涂层"},{"id":"6e677f30-449c-42b9-89ef-d79fee432938","keyword":"大气等离子喷涂","originalKeyword":"大气等离子喷涂"},{"id":"aee25851-acb3-4890-b163-cf6b99c8cdc1","keyword":"层状复合材料","originalKeyword":"层状复合材料"},{"id":"5db7a560-2c24-46ad-9423-ecc2e43c8d0b","keyword":"结构-功能一体化","originalKeyword":"结构-功能一体化"},{"id":"d6061e67-71dd-4692-b8c7-48cc75662c96","keyword":"辐射屏蔽性能","originalKeyword":"辐射屏蔽性能"}],"language":"zh","publisherId":"gncl201509015","title":"大气等离子喷涂制备Fe-Ni-B 合金涂层-321不锈钢层状复合材料的射线屏蔽性能研究?","volume":"","year":"2015"}],"totalpage":10706,"totalrecord":107051}