{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"根据聚合物分子运动的理论,可以近似确定聚合物加工温度:在分解温度与粘流温度之间,发生聚合物整体大分子运动,聚合物一次加工成型;在玻璃化温度附近,发生链段运动冷却定型,机械加工.在粘流温度与玻璃化温度之间,发生链段运动,聚合物二次加工成型.用差热分析、差示扫描量热法、力学松弛法中动态力学热分析和核磁共振松弛法研究聚合物分子运动,强调玻璃化温度、粘流温度、熔点和分解温度在聚合物成型加工中地位,理解玻璃态、橡胶态、粘流态、非晶态和晶态关系.剖析聚合物成型加工中凝聚态变化的温度依赖性,理解温度变化是聚合物加工成型中聚合物分子运动的体现.","authors":[{"authorName":"童彬","id":"795f62cf-ebdc-4a44-ac4d-ba0bacb9e663","originalAuthorName":"童彬"},{"authorName":"徐玲","id":"63ca58d3-b1ca-4b1e-aeef-f31fb47df672","originalAuthorName":"徐玲"}],"doi":"","fpage":"188","id":"1a2eeeab-ddb3-4491-b7cd-681de38942c6","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"37bc3048-0e00-400d-8db9-f8d5a9c14848","keyword":"聚合物分子运动","originalKeyword":"聚合物分子运动"},{"id":"58f5baaa-2216-4460-b38c-783f019412a3","keyword":"玻璃化温度","originalKeyword":"玻璃化温度"},{"id":"600755f6-3322-4c69-85f7-5113de82b245","keyword":"粘流温度","originalKeyword":"粘流温度"},{"id":"2ca223bb-efc6-4ff5-bb19-337ade924686","keyword":"聚合物凝聚态","originalKeyword":"聚合物凝聚态"}],"language":"zh","publisherId":"gfzclkxygc201305047","title":"聚合物分子运动聚合物加工成型温度的影响","volume":"29","year":"2013"},{"abstractinfo":"近年来非晶聚合物玻璃态-橡胶转变及分子运动受到众多学者关注.α'转变被证实在非晶聚合物玻璃态-橡胶转变区中普遍存在,Rouse运动模型能较好地描述其转变机理,即转变区中包含有链段、Sub-Rouse、Rouse不同长度单元的运动及转变.其转变行为主要受屏蔽效应和耦合作用的影响,屏蔽效应影响转变区的宽度,而耦合作用影响转变耗散峰的大小.对于具有较强屏蔽效应和耦合作用的聚合物,由于动态脆性较强和转变区较窄,不同运动模式的转变难以被分离而观察到.文中综述了能有效分离和观察不同运动及转变的增塑、稀释以及二维相关谱图等方法,总结了考察分子运动及转变行为的表征手段,对进一步研究进行了展望.","authors":[{"authorName":"张睿","id":"41f58cdc-9b04-481f-9720-89d63c98348e","originalAuthorName":"张睿"},{"authorName":"何显儒","id":"77e7baea-534c-474d-a323-a38f33688f4f","originalAuthorName":"何显儒"},{"authorName":"余慧","id":"99e4c6e1-0cc4-4040-9958-939e487fa405","originalAuthorName":"余慧"}],"doi":"","fpage":"186","id":"f5086178-0b3a-4062-8994-ed921879fe3e","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"bf763e7a-8bfc-496c-9206-d5e757e06611","keyword":"分子运动","originalKeyword":"分子运动"},{"id":"e35e07be-49bf-424d-a99c-ff3362f1306a","keyword":"玻璃态-橡胶转变","originalKeyword":"玻璃态-橡胶转变"},{"id":"90dbf834-b5fa-4333-8184-ec7d19acb78e","keyword":"α'转变","originalKeyword":"α'转变"},{"id":"5bf2058c-734f-440c-9c8f-2a3ae9947e4b","keyword":"Rouse运动","originalKeyword":"Rouse运动"},{"id":"a1a4fbdd-6172-4198-aafb-f3fc09ae3587","keyword":"Sub-Rouse运动","originalKeyword":"Sub-Rouse运动"}],"language":"zh","publisherId":"gfzclkxygc201504037","title":"非晶态聚合物玻璃态-橡胶转变及分子运动","volume":"31","year":"2015"},{"abstractinfo":"简单介绍了分子印迹聚合物(MIP)的制备及其分子识别机理,重点总结了MIP在分离领域的应用.","authors":[{"authorName":"张巧珍","id":"83070c1c-5879-4a2e-b238-be393e790090","originalAuthorName":"张巧珍"},{"authorName":"师晋生","id":"59532972-bdbf-4167-95aa-7ed5929bbd32","originalAuthorName":"师晋生"},{"authorName":"邓启良","id":"13ef71ec-bad8-401a-ad9c-6230bf66de1e","originalAuthorName":"邓启良"},{"authorName":"景作亮","id":"c4f428dc-d71a-4611-bcff-92aca048b1d0","originalAuthorName":"景作亮"}],"doi":"","fpage":"194","id":"39ab6511-cd55-4a95-abc6-1e3ed7fb2a4d","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c85eb705-776a-4b71-896d-05ce4d558219","keyword":"分子印迹 分子印迹聚合物(MIP) 分子识别 分离分析","originalKeyword":"分子印迹 分子印迹聚合物(MIP) 分子识别 分离分析"}],"language":"zh","publisherId":"cldb2003z1060","title":"分子印迹聚合物","volume":"17","year":"2003"},{"abstractinfo":"本文运用分子动力学模拟方法,模拟了不同温度条件下饱和气体和液体氩分子运动.对气液状态下分子运动在速度空间的演化相图进行了比较.根据分形理论,对实际分子的分数布朗运动特性进行了讨论.应用本文提出的约化规模法,获得了不同温度条件下分子分数布朗运动的Hurst指数和轨迹分维数.饱和液相分子运动的Hurst指数并不随温度单调上升,存在一个极小值.","authors":[{"authorName":"万黎明","id":"970a2225-3cda-4f7a-acdb-b77a03807d6e","originalAuthorName":"万黎明"},{"authorName":"刘朝","id":"453d508a-7341-4925-8d72-0d3a663e7f66","originalAuthorName":"刘朝"},{"authorName":"刘娟芳","id":"eb52418e-0a82-43e5-9321-e7a04f1f8c9a","originalAuthorName":"刘娟芳"},{"authorName":"曾丹苓","id":"37290f11-f118-4f06-8258-5ed6bfeece60","originalAuthorName":"曾丹苓"}],"doi":"","fpage":"561","id":"8a27bec3-9e0d-4441-ae87-53b013423c8a","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a24e46c4-1f5e-450c-b636-9e63acb7f55c","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"0ecd30d5-660c-49e9-8f04-6138932764dd","keyword":"轨迹分维数","originalKeyword":"轨迹分维数"},{"id":"f8024f79-eb0c-4445-abea-7f082fd2781a","keyword":"Hurst指数","originalKeyword":"Hurst指数"},{"id":"ffd497be-1f8a-43a9-93fa-7d16992614ec","keyword":"气液态","originalKeyword":"气液态"}],"language":"zh","publisherId":"gcrwlxb200504006","title":"气液态分子运动的Hurst指数及相图研究","volume":"26","year":"2005"},{"abstractinfo":"从超分子聚合物化学(合成与机理),超分子聚合物物理(结构和性能)和超分子聚合物工程(加工与应用)三个方面综述超分子聚合物科学与工程的内容和进展.","authors":[{"authorName":"吕亚非","id":"e836b4bb-d0a0-4760-acc2-f303668f84d0","originalAuthorName":"吕亚非"}],"doi":"","fpage":"47","id":"f98a78ac-3b52-48ef-8322-89aef7222b98","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f3c31435-fa75-4cfd-9cd5-b5aff8166cc8","keyword":"超分子聚合物","originalKeyword":"超分子聚合物"},{"id":"368c21c9-22bf-4232-a773-d7eee2d486c7","keyword":"非共价键相互作用","originalKeyword":"非共价键相互作用"},{"id":"aeb74af3-df48-4f75-bd3a-6ae5238b50ba","keyword":"自组装","originalKeyword":"自组装"},{"id":"556ea959-eeed-428d-a943-b65f4f0873c0","keyword":"分子识别","originalKeyword":"分子识别"},{"id":"2d4a66be-bc6d-4dbd-938c-87c3d889f8a3","keyword":"合成子","originalKeyword":"合成子"}],"language":"zh","publisherId":"gfzclkxygc200502011","title":"超分子聚合物科学与工程","volume":"21","year":"2005"},{"abstractinfo":"聚合物表面的松弛行为是高分子凝聚态物理研究领域中的一个热点问题,位于表面的高分子具有与本体分子截然不同的运动行为特点,从而赋予了高分子表面许多特殊性质,如特殊的环境响应性和表面粘弹性。文中综述了最近二十年关于聚合物表面分子松弛行为的研究进展,包括基于各种表征技术的研究方法、聚合物表面分子松弛行为的特点和影响因素。可以预测,随着新表征技术的开发应用,对聚合物表面分子松弛行为的研究将越来越深入。","authors":[{"authorName":"左彪","id":"261ffd1e-0062-41cb-be6d-980fd5a714ad","originalAuthorName":"左彪"},{"authorName":"卢晓林","id":"4c2f76ca-a425-4068-b7e1-ece9cd5b2555","originalAuthorName":"卢晓林"},{"authorName":"张蓉平","id":"d757c9c6-1fa3-4337-82be-befb2109d5cf","originalAuthorName":"张蓉平"},{"authorName":"张丽","id":"2cc40b20-09aa-4a97-8b59-2b5a5d192255","originalAuthorName":"张丽"},{"authorName":"王新平","id":"2067b8ed-371e-4530-91b7-d6dcd9d9368b","originalAuthorName":"王新平"}],"doi":"","fpage":"183","id":"f6976ba7-d315-4341-afe6-7278cf704e96","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a1fe394b-59e4-4a7d-ae19-2bd8505d967c","keyword":"高分子表面","originalKeyword":"高分子表面"},{"id":"88aea0c3-34b8-4ec5-98dc-fac218bac38b","keyword":"松弛行为","originalKeyword":"松弛行为"},{"id":"3d80be14-f3da-4a63-9224-efd22dd44e3d","keyword":"玻璃化转变","originalKeyword":"玻璃化转变"}],"language":"zh","publisherId":"gfzclkxygc201109053","title":"聚合物表面分子松弛行为研究进展","volume":"27","year":"2011"},{"abstractinfo":"超分子聚合物与传统的聚合物在制备方法、结构和性能上都有很大不同.近年来,超分子科学的研究应用工作飞速发展.本文通过对超分子液晶、金属-超分子聚合物、自组装超分子膜的介绍,介绍了超分子聚合物的研究应用进展.","authors":[{"authorName":"胡小芳","id":"09525421-568d-43be-a73f-7e124f1c6113","originalAuthorName":"胡小芳"},{"authorName":"胡大为","id":"359263c9-26ed-4daf-b1d9-95dacd7b2da3","originalAuthorName":"胡大为"}],"doi":"10.3969/j.issn.1671-5381.2007.03.008","fpage":"27","id":"6e1dd000-ac98-49f9-bb8a-19113243e899","issue":"3","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"4fb3f0bc-6349-4f15-a454-9156bcc0b21a","keyword":"超分子","originalKeyword":"超分子"},{"id":"7f2879f7-18c5-43b8-8650-6dfb63ab18f6","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"1b671f6a-ce2b-463c-b98a-329ae7c1b310","keyword":"液晶","originalKeyword":"液晶"},{"id":"d12b5d29-b90f-4513-a78f-8fd0142c9416","keyword":"自组装","originalKeyword":"自组装"},{"id":"366ca5c0-2d01-4a1f-8e5f-d2b5c9868168","keyword":"膜","originalKeyword":"膜"}],"language":"zh","publisherId":"hccllhyyy200703008","title":"超分子聚合物研究与应用进展","volume":"36","year":"2007"},{"abstractinfo":""高分子"、"大分子"和"聚合物"这3个术语是高分子学科领域内最重要的基本术语,三者相互联系又相互区别。文中通过对其分别进行定义,揭示了它们之间的区别和联系。通过分析认为,"高分子"与"大分子"二者可以作为同义词对待。总结了在当今时代环境下"高分子"一词常见的借代含义。文章最后指出,"高分子"一词已经成为高分子学科中文学术语言系统中一个具有中心地位的词,其在构建高分子学科中文学术语言体系中所起的重要作用,是"大分子"、"聚合物"等术语无法相比的。","authors":[{"authorName":"贺昌城","id":"189c571f-b330-4b26-bd22-400aa4c630b1","originalAuthorName":"贺昌城"}],"doi":"","fpage":"187","id":"e890d16a-43dc-4b13-b5ab-895641cd95d8","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"00116373-a1bf-4ef8-a3fd-c1c71078c60b","keyword":"高分子科学","originalKeyword":"高分子科学"},{"id":"33f69529-b985-4e7b-9ed4-893f61941c34","keyword":"教学研究","originalKeyword":"教学研究"},{"id":"0af9f858-12a7-4f37-9946-28bc728aa17d","keyword":"高分子","originalKeyword":"高分子"},{"id":"e05a98c3-6d39-4055-9807-10df186e4cfd","keyword":"大分子","originalKeyword":"大分子"},{"id":"b8142dd4-acb4-4aad-9d35-2d02ca092c80","keyword":"聚合物","originalKeyword":"聚合物"}],"language":"zh","publisherId":"gfzclkxygc201209047","title":"高分子·大分子·聚合物","volume":"28","year":"2012"},{"abstractinfo":"文中求出了CO2气泡注入到熔融聚合物流场后的计算模型,利用熔体流变学理论与两相流理论对气泡的头部、尾部、速度进行分析,计算了气泡在聚合物熔体中的速度表达.结果表明,其头部速度Un,尾部速度Ut等不仅与熔体的性质、流场条件有关,同时还与此气泡在流道中位置、气泡内的压力变化等诸多因素有关.为此引入综合系数C以修正上述理论计算模型,通过一系列实验,得出影响CO2在熔融聚合物运动的综合系数C,利用其对上述理论运动模型加以有效的实验修正,进一步得到符合实际的气泡在熔融聚合物流场中运动计算模型.","authors":[{"authorName":"李琳","id":"96bddf91-62fe-4d88-b51d-7cafb46a384a","originalAuthorName":"李琳"},{"authorName":"彭玉成","id":"95aa28ba-aa3b-49c3-afe0-e5880eea3b60","originalAuthorName":"彭玉成"}],"doi":"","fpage":"114","id":"4f889330-a2b2-4b3c-9f19-620847ffcb0f","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"835f0ad3-f0cf-41e5-817f-c0c92f67692a","keyword":"CO2气泡","originalKeyword":"CO2气泡"},{"id":"da5273aa-8157-46a4-bdff-dec2ce03dee5","keyword":"熔融聚合物","originalKeyword":"熔融聚合物"},{"id":"7c12d3c7-2eb7-45c9-b3b8-16ef3a629c49","keyword":"运动分析","originalKeyword":"运动分析"}],"language":"zh","publisherId":"gfzclkxygc200908032","title":"熔融聚合物中气泡的运动分析与实验研究","volume":"25","year":"2009"},{"abstractinfo":"对分子印迹聚合物的设计、制备及其特性以及分子印迹技术的未来发展方向进行简要评述.过程及方法:概述了分子印迹技术的原理和特点,重点介绍了分子印迹聚合物的制备和特性,最后分析了分子印迹技术目前存在的一些突出问题.结果及应用范围:作为一种制备具有亲和性和选择性高、稳定性好的分子印迹聚合物的技术,分子印迹以其简便、通用和高效等特点吸引了研究者的广泛兴趣.分子印迹聚合物在分离分析、仿生传感器和模拟酶催化等领域将具有重要的应用前景.","authors":[{"authorName":"姜忠义","id":"da9b9c4e-4b7e-47bd-ad94-163c3e9dd402","originalAuthorName":"姜忠义"}],"doi":"","fpage":"25","id":"2ae57b1a-eaa8-40b0-ae5a-4ef61bcf8407","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c5f7c130-2bd9-4f12-8d7d-86ef23b8c6d3","keyword":"分子印迹","originalKeyword":"分子印迹"},{"id":"838fa55e-ebb3-43ff-97d5-0a08e73d4815","keyword":"分子印迹聚合物","originalKeyword":"分子印迹聚合物"},{"id":"cf7df0cf-006b-42e5-b19b-e4b5f1beca90","keyword":"设计","originalKeyword":"设计"},{"id":"321a1aa3-bd30-4960-8b79-3978329b8d56","keyword":"制备","originalKeyword":"制备"},{"id":"13a3d371-022e-46e8-8340-82bb8caa9e17","keyword":"特性","originalKeyword":"特性"}],"language":"zh","publisherId":"gfzclkxygc200403007","title":"分子印迹聚合物的设计与制备","volume":"20","year":"2004"}],"totalpage":5045,"totalrecord":50449}